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Abbreviations used in the text 

AFBACs—affected family based controls 

AGFAP—antigen/allele genotype frequencies among patients 

BISC—Bioinformatics Integration Support Contract 

CGM—conditional genotype method 

CHM—conditional haplotype method 

CLR—conditional logistic regression 

df—degrees of freedom (in, for example, a chi-square test of heterogeneity)  

DR3—a haplotype of DRB1, DQA1, and DQB1 with the following allelic variants: 

DRB1*03:01- DQA1*05:01-DQB1*02:01  

DR4— haplotypes of DRB1, DQA1, and DQB1 with the following allelic variants: 

DRB1*04:01- DQA1*03:01-DQB1*03:02 or DRB1*04:04-DQA1*03:01-DQB1*03:02, 

used in discussions of HLA associations with type 1 diabetes (T1D) 

genoPDT—genotype pedigree disequilibrium test  

GWAS—genome wide association study (GWASs—studies)  

HLA genes—human leukocyte antigen presenting immune response genes  

HLA class I genes—A, B, and C 

HLA class II genes—DRB1, DQA1, DQB1, DPA1, DPB1 (DRA1 is much less polymorphic and 

rarely tested in disease association studies; DRB3, DRB4, and DRB5 have previously rarely 

been tested, but are now included in proposed high throughput sequencing studies) 

HLA DR-DQ genes—shorthand for the HLA class II DRB1, DQA1, and DQB1 set of high LD 

genes: sometimes with DQA1 not typed 

HPLT—homozygous parent linkage test 

HPTDT—homozygous parent transmission disequilibrium test  

HRR—haplotype relative risk  

HSH—haplotype specific heterozygosity 

HWP—Hardy Weinberg proportions 

IBD—identity by descent (values of 2, 1, and 0 indicate sharing of parental alleles IBD for 

affected sib pairs, often denoted as X, Y, and Z) 

IDAWG— Immunogenomics Data Analysis Working Group (IDAWG) 

 (www.immunogenomics.org) 

IDDM—insulin dependent diabetes mellitus (now called type 1 diabetes - T1D) 

IDDM1—the HLA class II DRB1, DQA1, DQB1 genes that are the primary disease predisposing 

HLA region genes for type 1 diabetes (T1D), previously called IDDM, and are the major 

genetic contributors to T1D disease risk 

ImmPort—Immunology Database and Analysis Portal (https://www.immport.org) 

JIA—juvenile idiopathic arthritis  

JIA-OP—juvenile idiopathic arthritis with the subphenotype oligoarticular-persistent 

KIR—killer cell immunoglobulin-like receptor 

http://www.immunogenomics.org/
https://www.immport.org/
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LD—linkage disequilibrium 

LR—logistic regression 

MHC—major histocompatibility complex 

MLE—maximum likelihood estimate 

MPC pedigrees—multiplex parent-child family data (parents and offspring) ascertained based on 

the presence of at least one affected parent and one affected child 

MPS pedigrees—multiplex parent-sib pair family data (parents and offspring) ascertained based 

on the presence of at least one affected parent and an affected sib pair 

MSAT—microsatellite locus 

MSP pedigrees—multiplex sib pair family data (parents and offspring) ascertained based on the 

presence of at least two affected sibs (previously referred to as MS (multiplex sibs) pedigrees, 

see e.g., Thomson (1995a, b) 

NIDDM—non-insulin dependent diabetes mellitus (now called type 2 diabetes – T2D) 

NK—natural killer  

OCGM—overall conditional genotype method  

OCHM—overall conditional haplotype method  

OR—odds ratio 

PCA—principal components analysis   

P/C ratio—ratio of patient to control population level frequencies for an allele, haplotype, or 

genotype 

PDT—pedigree disequilibrium test  

PyPop—Python for Population Genomics analyses (an analysis software package specifically 

designed to handle HLA data - www.pypop.org) 

QC—quality control  

RPEs—relative predispositional effects 

RR—relative risk 

S pedigrees—simplex family data (parents and offspring) ascertained based on the presence of at 

least one affected child 

SNP—single nucleotide polymorphism 

SPTDT—single parent TDT 

SFVT—sequence feature variant type 

T1D—type 1 diabetes (previously referred to as IDDM – insulin dependent diabetes mellitus) 

T2D—type 2 diabetes (previously referred to as NIDDM – non-insulin dependent diabetes 

mellitus) 

TDT—transmission disequilibrium test 

VNTR—variable number of tandem repeats 

http://www.pypop.org/
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I. Overview 

 

Note that, except as necessary, references are not given in Section I; detailed references are listed 

later in the relevant sections. 

 

 A. Introduction 

 

Our aim is to review methods to optimize detection of all disease genes in a genetic region that 

are directly involved in differential risk to a complex disease. A number of factors make the study 

of complex diseases difficult, including the following: 

 

a. Incomplete penetrance: not all susceptible individuals are affected.  

b. Disease heterogeneity: e.g., maturity onset diabetes of the young (MODY), type 1 diabetes 

(T1D), and type 2 diabetes (T2D) were initially regarded as different manifestations of the 

same disease. We now know that even within these three separate categories there is 

additional genetic heterogeneity. Most likely, many complex diseases have genetic 

heterogeneity, e.g., schizophrenia and alcoholism; although informative subdivisions of the 

data for genetic analyses based on for example, clinical features, have so far not been 

successful. 

c. Low disease prevalence: e.g., T1D and multiple sclerosis in China are so rare that affected sib 

pair families are not available for linkage screens. In this situation, disease genes can only be 

investigated using association studies, e.g., looking at genes identified in Caucasians or other 

ethnic groups as involved in disease, candidate genes, associated single nucleotide 

polymorphisms (SNPs) identified by genome wide association studies (GWASs), and genes 

identified in animal models. 

d. High disease prevalence: e.g., heart disease; the high prevalence can cause problems with 

linkage analyses as disease genes may be inherited from both sides of the family. 

e. Late-onset diseases: e.g., T2D, heart disease, Alzheimer‘s and Parkinson‘s disease are 

difficult to study by linkage methods as parents of the affected patient are usually deceased, 

as may be some siblings. 

f. Infectious diseases: e.g., AIDS and tuberculosis are particularly difficult to study due to 

difficulties in obtaining accurate knowledge of exposure. 

g. The involvement of several (many) disease-predisposing loci: apart from HLA (human 

leukocyte antigen) associations, with many complex diseases the disease predisposing genes 

identified by GWASs generally have small odds ratios (ORs).  

h. Environmental factors, age of onset, gender-specific, maternal-fetal, and imprinting 

effects have all been shown to apply for many complex diseases and can alter the power of a 

study, and also result in heterogeneity in results between studies. 

i. Interaction effects: the genetic and biochemical pathways involved in disease risk are poorly 

understood at this point, and similarly interaction effects between disease predisposing loci. 

j. Strong linkage disequilibrium (LD) between closely linked loci: once a genetic region has 

been implicated in disease risk, localization of the locus or loci or amino acids directly 
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involved is complicated by the high LD which is often seen between closely linked markers. 

Cross-ethnic studies can sometimes be very important in showing consistency in risk 

heterogeneity at a putative primary disease predisposing gene, and also in identification of 

primary genes when there is a breakdown in LD. 

 

 These features make it difficult to localize disease genes, ascertain the number and 

relationship of disease loci involved, understand modes of inheritance and interaction effects, 

determine the molecular basis of disease, and understand the mechanism(s) by which these 

genetic changes give rise to disease. This latter point unfortunately holds even when strong 

associations with primary disease genes have been identified, e.g., the many diseases with strong 

and verified associations and direct differential risk effects for the classical HLA immune 

response genes.  

 There has been much discussion of the role of common versus rare genetic variation in 

differential risk for complex diseases (see e.g., Loehmuller et al. 2003). A combination of these 

two extreme models may very well apply. Different individuals and families will often have 

disease predisposition due to a different set of disease predisposing genes, making their 

identification even more difficult. Further, to always keep in mind, all these genes are 

susceptibility rather than necessary loci. Also, every disease may show its own unique features of 

genetic predisposition, making it difficult to predict which methods may be optimal for detecting 

disease genes. Comparisons between familial and ―sporadic‖ cases of disease may be 

informative, and again patterns of inheritance may differ greatly between diseases.   

 Despite extensive efforts by many groups, until recently only a few genes and some 

genetic regions involved in complex diseases had been identified. The general picture was one of 

difficulty in locating disease genes and replication of reported linkages and associations. The 

major exception was the many well established HLA disease associations. In a meta-analysis by 

Hirschhorn et al. (2002), only six non-HLA genes were consistently replicated as associated with 

complex diseases, including apolipoprotein E (APOE) with Alzheimer‘s disease and CCR5 with 

AIDS. These six genes were identified from literature data on 166 putative associations which 

had been studied three or more times.  

 Since this meta-analysis, the pace of discovery of complex disease genes identified via 

linkage and association studies has increased due to the availability of new technologies. GWASs 

are finding new disease predisposing genes or genetic regions; although the SNPs verified as 

associated with disease appear to explain only a small fraction of the genetic heritability. GWASs 

have also identified many additional diseases with validated HLA region associations. The exact 

number of verified HLA disease associations is not known, but was estimated to be > 300, and 

certainly > 100, even before more recent GWAS findings (which identify the HLA region as 

involved in disease, but do not identify the locus or loci directly involved in differential disease 

risk).  

  In this review, our discussions focus on the HLA region (human ch. 6p21), although the 

analysis methods and issues discussed are generic and relate to all genomic regions and complex 

diseases in general. Note however, that many standard analysis programs are designed for the 

study of bi-allelic SNP data and cannot accommodate the highly polymorphic HLA data (see 

Table I.A.1). The HLA classical antigen presenting genes usually typed are: class I (A, B, and C) 

and class II (DRB1, DQA1, DQB1, DPA1, and DPB1). DRA is not routinely typed as the single 

known amino acid is not known to be functionally significant: also DRB3/4/5 are usually not 

typed due to high LD with DRB1. As seen in Table I.A.1, there are thousands of possible alleles 
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for class I loci and hundreds for some class II loci. The number of alleles seen in any individual 

study will be substantially less than these total numbers of variants; however it is not uncommon 

to see 40 to 50 protein-level alleles at DRB1, 15 or more at DQB1, and 50-80 DRB1-DQB1 

haplotypes. See www.ebi.ac.uk/imgt/hla/stats.html for data on additional HLA and non-HLA 

loci. 

 

Table I.A.1: Polymorphism of the HLA class I and II genes
a
 

 

Gene Alleles Proteins Nullsb 

 

 

Class I 

A 1698  1243  83 

B 2271  1737  73 

C 1213     884  33 

   

Class II 

DRA      7    2   0 

DRB1   975   736  11 

DRB3   57     46    0 

DRB4   15     8    3 

DRB5   19     16    2  

DQA1   44     27    1  

DQB1  158   109   1  

DPA1   32     16    0  

DPB1  149   129    3 

 
a 
From www.ebi.ac.uk/imgt/hla/stats.html (IMGT/HLA database Release 3.5.0, July 14, 2011) 

b 
Null alleles are not expressed on the cell surface  

 
 

 As our starting point, we discuss methods to test for evidence of the involvement in 

disease risk of a genetic region under study, based on significance levels from linkage and/or 

association studies, replication studies, or meta-analyses (Section I.B and Section II). Our 

emphasis is on the HLA region including its inherent complexities of nomenclature, typing 

techniques evolving through time, and the continual discovery of new alleles. For closely linked 

markers, there will often be multiple associations with disease, and linkage analyses identify a 

region rather than the specific disease predisposing gene. Hence, the first task is to identify the 

primary (major) disease predisposing gene or genes in a genetic region, that is, to distinguish 

―true‖ associations from those due to LD with the actual disease predisposing variants. (We 

remind the reader that these predisposing loci directly influence differential disease risk 

heterogeneity within the context of incomplete penetrance.)  

 Throughout, we will follow the somewhat vague definition that has evolved with progress 

in disease gene discovery (see Thomson et al. 2008): primary disease genes are those that ―stand 

out‖ in initial association studies, and for the most part associations of other markers in the 

genetic region can be explained via their LD patterns with the primary disease gene(s). A number 

http://www.ebi.ac.uk/imgt/hla/stats.html
http://www.ebi.ac.uk/imgt/hla/stats.html
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of genes or SNPs (not necessarily in the same gene) in a region may be included in the primary 

disease gene category. Additional (secondary) disease predisposing genes are detected once we 

take account of (condition on) these primary disease genes, usually after study of additional 

marker loci with an increased sample size; secondary disease genes are expected to have more 

subtle, weaker effects. Also, these secondary effects may be restricted to a subset of alleles, 

haplotypes, or genotypes at the primary disease gene, and some may only be seen in specific 

populations or ethnic groups.  

 Initially, only the classical HLA class I and II genes were studied (first via serological 

typing and more recently via molecular typing) with a few other genes in the HLA region studied 

occasionally. Identification of the primary gene(s) at the classical loci was based mainly on 

higher ORs for the class II DR-DQ (DRB1, DQA1, DQB1) associations than for class I (in most 

cases), with informal, as well as formal, applications of conditional analyses taking account of 

LD patterns. Cross-population and cross-ethnic studies were, and continue to be, very important 

in showing consistency in risk heterogeneity at a putative primary gene, and also in identification 

of primary genes when there was a breakdown in LD, e.g., with the closely linked and high LD 

HLA DR-DQ (DRB1, DQA1, DQB1) genes. With more recent typing of microsatellites 

(MSATs) and then large numbers of SNPs in the HLA region, the direct primary role of one or 

more classical HLA genes has continued to be validated. 

  Under the assumption that a primary HLA region gene (or genes) has been identified, we 

discuss analyses that can be applied to the data to detect significant differences in relative risk 

effects and modes of inheritance (Section I.C and Section III). A full understanding of the 

heterogeneity of genetic risk at a primary locus is necessary to avoid spurious results when 

testing for secondary disease genes.  

 How do we detect secondary (additional) disease genes? The stratification (conditional) 

analyses described to detect secondary disease genes (Section I.D and Section IV) are also of 

course the basis of determining if a gene is primary in disease risk heterogeneity. Novel methods 

have been developed in study of both the primary and secondary disease genes in the HLA 

region. There is evidence of the role in disease risk of secondary genes in the HLA region, 

including other classical HLA genes, as well as effects associated with MSATs and SNPs. 

However, identification of MSAT and SNP associations that are not due to LD with primary 

disease predisposing genes has been as difficult as study of the non-HLA disease genes for a 

complex disease; in both cases considerable heterogeneity is seen across studies.  

 With both primary and secondary disease genes that involve one or more classical HLA 

antigen presenting genes, an additional aim is to detect the specific amino acids, or combinations 

of amino acids, that are directly involved in disease risk heterogeneity (Section I.E and Section 

V). As with conditional analyses of HLA allele, haplotype and genotype data, identifying specific 

amino acid effects is also difficult, again due to high LD and extensive polymorphism at 

functionally important sites. 

 HLA class I proteins are also ligands for the KIR (killer cell immunoglobulin-like 

receptor - human ch. 19q13.4) inhibitory and activating receptors that are expressed on natural 

killer (NK) cells, and a small percentage of cytotoxic T-cells, and regulate cell killing and 

cytokine response. Disease associations with variation at KIR loci has also been demonstrated, 

generally in combination with their HLA class I ligands. A summary of specific issues relating to 

study of KIR associations with disease is given in Section I.F; more specific details will be given 

at a later date in a separate Methods Manual. 
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 No existing programs, either individually, or in aggregate, can handle the breadth and 

complexity of the analyses that are needed to detect primary and secondary disease genes in the 

HLA region using currently available methods. Further, even with modern computers one cannot 

study, let alone interpret, every possible combination of genetic markers and their haplotypes 

across the genome, or even within a genetic region. The complex LD patterns of HLA region 

genes, SNPs, amino acids at the classical HLA genes, etc., are a major complicating factor in 

deciphering specific genetic variants directly involved in differential disease risk. Further, many 

analysis software packages do not work with the high degree of polymorphism found at HLA, 

while others only allow a limited number of highly polymorphic loci to be evaluated.  

 The effects of environmental factors, age of onset and gender-specific effects, undetected 

heterogeneity of disease, gene-gene and gene-environment interactions further complicate our 

attempts to detect predisposing genes (primary and secondary) for complex diseases. Our survey 

of methods below particularly highlights the importance of a complementary, multi-strategy array 

of methods to uncover all the different facets of complex genetic diseases. 

 We recommend that the data and analysis results be studied carefully to understand 

differences in significance from different methods. There is no ―best practice‖ for the types of 

analyses needed for these projects. The power of different methods will vary depending on the 

specific genetic and environmental features of the disease under consideration; for most complex 

diseases this involves many unknown factors. Although we must rely heavily on computers, in 

the final analysis of multiple effects in a genetic region and/or interaction or independent effects 

between unlinked genes, manipulation and scrutiny of the data by the individual investigator 

must play a crucial role. Our aim is to look for consistency of results across studies, and to take 

note of effects which may be seen in one or more analyses but may be missed in other analyses.  

 From our combined experience in analyses of data on complex diseases, we emphasize 

that there is a required interplay between studying individual SNP, MSAT, and HLA allele, 

haplotype, and genotype effects, and that all putative significant effects must be scrutinized in 

individual detail by the researcher. Also, fit of the data to a particular model, for example, that a 

particular disease gene can explain all the linkage and association data in a genetic region, does 

not validate that model. It may merely mean there is insufficient power to detect additional 

effects, or that appropriate stratification of the data to detect additional effects was not carried 

out, or that additional markers need to be typed. However, rejection of a model, apart from type 1 

error or breaking of assumptions of the model, for example, random sampling of a homogenous 

population, allows one to unequivocally state that additional factors must be incorporated into the 

model of disease, and guides further investigation of such factors.  

 In the following, we will not discuss the issue of correcting for multiple testing. From our 

experiences with HLA-associated diseases with regard to detecting the effects of non-HLA 

region genes as well as additional genes in the HLA region, the issue is the difficulty in finding 

let alone replicating effects, rather than a deluge of type 1 errors. Many initial findings of primary 

HLA disease associations would not have survived correction for multiple tests, yet they have 

been extensively replicated and verified. Although we are very sensitive to the issue of type 1 

errors, our emphasis throughout will be on detecting effects to be followed up in independent 

studies, ranked of course by relative p-values. We strongly encourage use of resampling methods 

in all analyses of multiple markers in a genetic region. One can then adjust for multiple testing of 

non-independent results due to LD and take account of the fact that haplotypes are estimated 

rather than known as assumed in most analyses, and to give an empiric p-value to guide 

interpretation of results. However, in many cases the computing needs of resampling techniques 
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may be prohibitive. Other approaches for multiple testing include sequential methods (adjusting 

first for a number of loci and then a number of alleles at a given locus at a second stage), and 

adjusting for a number of effectively independent comparisons based on LD among 

loci/alleles/sequence features. 

 

 B. Primary disease genes: tests of linkage and association 

 

Examples of diseases with well established primary HLA associations include (see Dausset and 

Svejgaard 1977, Tiwari and Terasaki 1985, Lechler 1994, Thorsby 1997, Thorsby et al. 2007): 

class II: HLA DR-DQ (DRB1, DQA1, DQB1) for type 1 diabetes (T1D); HLA-DRB1 for 

rheumatoid arthritis, juvenile idiopathic arthritis (JIA), multiple sclerosis, and systemic 

lupus erythematosus; HLA-DQB1 for narcolepsy; and HLA-DPB1 for chronic berrylium 

disease; and  

class I: HLA-B for ankylosing spondilitis and HLA-C for psoriasis.  

 Hemochromatosis is an example where the initial association was with a classical HLA 

gene (the A3 allele of the HLA-A gene), but the primary gene mapped to the extended HLA 

region. Many of the HLA-associated diseases are of autoimmune or inflammatory origin, but 

Hodgkin‘s disease and other cancers, and infectious diseases such as malaria, tuberculosis, and 

AIDS also show HLA associations. 

 With the many GWAS results implicating the HLA region, the classical HLA genes are 

the most likely candidates. In examples where GWAS and HLA typing results are both available, 

the p-value and OR from the strongest SNP association is in some cases close to the results from 

HLA typing, e.g., multiple sclerosis (IMSGC 2007, Ramagopalan et al. 2009), and systemic 

lupus erythematosis (Barcellos et al. 2009). In many other cases, the HLA region association for 

GWAS data is much smaller than that derived from HLA typing data for the primary disease 

gene. For T1D, ORs as high as ~22 have been observed for the most common predisposing three-

locus HLA DR-DQ genotype in Caucasians (DRB1-DQA1-DQB1: 03:01-05:01-02:01 / 04:01-

03:01-03:02), and an OR of ~0.03 for the most protective (dominant) haplotype (15:01-01:02-

06:02), compared to the GWAS strongest effect with an OR of 0.28 (or 3.57 for the alternate 

SNP allele) (Cooper et al. 2008). When only GWAS data are available giving strong evidence of 

HLA region involvement, as in schizophrenia (Shi et al. 2009) and Parkinson‘s disease (Hamza 

et al. 2010), one cannot predict if the association(s) will be similar, or much stronger, with HLA 

typing. The latter is probably more likely the more complex the hierarchy of relative predisposing 

or protective risk categories, as with T1D, or if appropriate tagging SNPs for the classical HLA 

loci (most of which are unknown) were not included in the GWAS SNPS. 

 As additional markers in the HLA region are typed, the conditional analysis methods 

described in Section IV to detect secondary disease genes, must first be applied to the primary 

disease gene, to show continued validation, or not, of its primary role. When secondary genetic 

effects are identified in a region, one would then again apply the methods of Section III to 

understand the genetic basis and heterogeneity of this additional effect, in combination with the 

primary disease gene. 

  

 The following is a summary of the topics and methods described in Section II (Primary 

Disease Genes: Tests of Linkage and Association):  
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1.  HLA Nomenclature and STREIS Reporting Guidelines: HLA data should be recorded 

using the current nomenclature version (http://www.ebi.ac.uk/imgt/hla/nomenclature). 

Further, the principles of the STrengthening the REporting of Immunogenomic Studies 

(STREIS) guidelines developed by the Immunogenomics Data Analysis Working Group 

(IDAWG) (www.immunogenomics.org) are strongly recommended (also see Hollenbach 

et al. 2011b, Gourraud et al. 2011). Quality control (QC) of the data should include: 

validation of allele names against a specifc IMGT/HLA database release, appropriate 

binning of alleles for meta-analyses, testing of Hardy Weinberg proportions (HWP) in 

controls (significant deviations may indicate errors in allele calls), and study by the 

investigator of multilocus haplotype patterns, as previously unobserved high LD HLA B-

C, DR-DQ and DPA1-DPB1 haplotypes may flag errors. Modules in the PyPop (Python 

for Population Genomics) software package (www.pypop.org) (Lancaster et al. 2003, 

2007a, 2007b) can be used for all these analyses. All family genotypes should be 

examined for Mendelian inconsistencies using for example PEDCHECK (O‘Connell and 

Weeks 1998). 

 

2. Tests of nuclear family AFBAC data: For family based data, the AFBACs (affected 

family based controls) are the non- or never-transmitted parental alleles as appropriate to 

the ascertainment scheme [S (simplex) ascertainment refers to nuclear family samples 

selected based on at least one affected child, other ascertainment schemes considered are 

MPC (multiplex parent-child), MSP (multiplex sib pairs), and MPS (multiplex parent-sib 

pairs) Section II.C]. Appropriate tests are: 

a. Equality of AFBAC maternal and paternal frequencies (a significant difference 

may imply a maternal/fetal interaction effect, in which case only the paternal 

AFBACs should be used). 

b. Test for equality of AFBAC frequencies with control marker frequencies 

available from any other sources, e.g., population data, other disease studies, and 

AFBACs ascertained under different criteria. With case/control data, one must be 

careful to understand the ascertainment scheme for the controls, i.e., whether it is 

from a random or non-diseased population. For rare diseases there will be little 

difference, but for common diseases this is not the case.  

c. Test for multiplicative structure of the paternal transmitted and non-transmitted 

alleles for S ascertainment, with appropriate modifications for other ascertainment 

schemes, and similarly for the maternal alleles. A significant difference in the latter 

case may reflect a maternal/fetal interaction effect. 

d. Test for a multiplicative structure of the paternal non-transmitted alleles and the 

child’s genotype for S ascertainment, with appropriate modifications for other 

ascertainment schemes, and similarly for the maternal alleles. A significant difference 

in the latter case may reflect a maternal/fetal interaction effect. 

e. Maternal offspring compatibility of the mother‘s and affected child‘s genotypes can 

also be tested using conditional logistic regression (CLR) (Bronson et al. 2009), with 

compatibility or not of the child to the father used as a control. 

f.  Test for fit to HWP of the AFBAC genotypes created, with S ascertainment, from 

the maternal and paternal non-transmitted alleles in each family. For MSP 

http://www.ebi.ac.uk/imgt/hla/nomenclature
http://www.immunogenomics.org/
http://www.pypop.org/
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ascertainment (nuclear families with at least two affected siblings), only the families 

where both sibs share the same two parental alleles (AC) (Figure II.C.1c) are used in 

this test. A significant deviation from HWP may reflect a maternal/fetal interaction 

effect, as well as population stratification effects. 

 

3. Tests of association and linkage: A number of methods to test the data for association 

or linkage or both are available; some of course are specific to particular ascertainment 

schemes. In all tests, the effect of the sex of the affected child, and age of onset of disease 

should be examined and used as a covariate in CLR tests or appropriate subdivisions of 

the data in chi-square heterogeneity tests (Section II.D). Standard disease association and 

or linkage analyses of the classical HLA genes are usually the first step in any study. 

Given the strong LD between the class II DR-DQ genes, the class I B-C genes, the class II 

DPA1-DPB1 genes, and the DRB3/4/5 loci and DRB1, these are usually analyzed as 

haplotypes, and locus specific effects may be determined when there is sufficient 

breakdown in the LD with heterogeneity of risk effects. Genotype effects are also 

considered, with the caveat that genotype frequencies rapidly become very small in 

patients, and are always small in controls due to the high level of polymorphism of HLA 

alleles. For this reason most analyses of classical HLA loci focus on allele or haplotype 

data, and genotype data analyses are often restricted to comparisons of specific, more 

frequent, genotype subsets. 

 

a. For case/control data, test for association of marker genes linked to a disease 

predisposing gene, or a gene directly involved in disease risk heterogeneity, using a 

contingency table test of heterogeneity, CLR, or other tests. The individual allele, 

haplotype or genotype contributions to the overall test can also be examined (see 

Section II.D). Age of onset effects should always be considered when possible, and 

likewise heterogeneity in allele frequencies across the study population identified for 

example by principal components analysis (PCA), both can be accommodated as 

covariates in CLR analyses. 

b. For nuclear family based data, test for association of marker genes linked to a 

disease predisposing gene, or a gene directly involved in disease risk heterogeneity, 

using the transmission disequilibrium test (TDT) (Spielman et al. 1993).  

c.  For nuclear family based data, test for equality of paternal versus maternal 

transmission rates of marker alleles within each ascertainment scheme 

d. For nuclear family based data, test for paternal versus maternal effects which 

may be genotype dependent, i.e., with S ascertainment test for equality of A1Ak 

genotypes in the affected child versus AkA1, where the first listed allele is that 

transmitted from the father, k = 2, 3, …m (Thomson 1995b). 

e. For nuclear family based data ascertained for the presence of at least two 

affected sibs (MSP pedigrees) deviations from the Mendelian random expectations 

of 25%, 50%, and 25% that two affected sibs will on average share 2, 1, and 0 

parental chromosomes in common identical by descent (IBD) implicate a disease 

predisposing gene in the region. 
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f. For nuclear family based MSP data, use of allele sharing IBD values can increase 

the power of association studies, and vice versa, partitioning linkage analyses by 

genotypes of associated alleles can also increase power (Section II.E) 

g. Test for heterogeneity of risk effects would be the next step for genes showing an 

overall association with disease (see Section I.C and Section III). 

 

4.  Linkage disequilibrium (LD) values should be plotted for all markers in the region 

where significant associations with disease are found. Informal inspection of the data 

across loci can target the possibility of the highest overall chi-square values (with 

heterogeneity testing of patient and control allele frequencies), or highest ORs for specific 

alleles, implicating the primary disease gene or genes, and the associations of other genes 

being for the most part explained by the known patterns of LD of the HLA genes. Formal 

analyses would involve use of conditional methods described in Section I.D and Section 

IV. 

   As mentioned above, many standard population and disease analysis software do 

not allow for the high level of polymorphism of the HLA genes, including programs for 

estimation of haplotype frequencies and LD. As mentioned in point 1 above, appropriate 

algorithms have been developed for HLA data using the haplotype and LD estimation 

module in PyPop (www.pypop.org) but the precompiled version of the software for 

haplotype estimation is currently limited to a total of 7 loci and sample size n = 5,000 

individuals at a time. Users can modify these constraints in the source code. The 

Estihaplo algorithm of Gourraud et al. (2007) (http://birl.supbiotech.fr/hla-estihaplo.html) 

does not have this restriction and will be incorporated into PyPop at a later date. 

Similarly, the iHap web application (www.immunogenomics.org/ software.html), is 

capable of estimating haplotypes for much larger datasets than PyPop. Standard measures 

of individual allele and overall LD for a pair of loci, as well as normalized values, should 

be calculated, as well as haplotype frequencies across a number of loci at a time after the 

QC steps outlined above (see Single et al. 2011, Mack et al. 2011, Hollenbach et al. 

2011b). 

   

 C. Primary disease genes: modes of inheritance 

 

How do we determine if a primary disease predisposing gene has been identified? Then, how do 

we detect any additional disease predisposing genes in this genetic region? The methods we use 

to detect, or not, secondary disease-predisposing genes in a region (Section IV) are also the base 

of the formal analyses that must be performed to detect a primary disease predisposing gene or 

genes versus marker genes in LD with the primary disease gene. Detailed study of this primary 

disease gene, or combination of genes would then follow (Section III).  

 Historically, the classical HLA genes were studied first with serological typing of class I 

and later class II loci and more recently via molecular typing of class II followed later by class I. 

As mentioned above, identification of the primary gene(s) was based mainly on higher ORs for 

the class II DR-DQ associations than for class I (in most cases), with informal, as well as formal, 

applications of conditional analyses taking account of LD patterns. With typing of additional 

genes, as well as MSAT and SNP typing in the HLA region, the primary role of HLA classical 

http://www.pypop.org/
http://birl.supbiotech.fr/hla-estihaplo.html
http://www.immunogenomics.org/
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genes in disease has been demonstrated in many, but not all, cases. Secondary roles of other 

classical HLA genes, as well as other HLA region loci have been demonstrated.   

 Once a primary disease gene (or genes) in a genetic region has been identified, the 

emphasis is then on understanding all genetic aspects of its mode of inheritance and 

heterogeneity in risk: these topics are covered below in Section III (Primary Disease Genes: 

Modes of Inheritance). Detecting differential risk between alleles, haplotypes, and genotypes at 

the primary disease gene is a major consideration as these influence the categories to be 

considered with the stratification analyses described below in Section IV (Secondary Disease 

Genes). We may often need to combine sets of HLA alleles, haplotypes, and genotypes at the 

primary disease gene that have similar relative risk effects into a ―homogenous‖ class, in order to 

avoid sparseness of cells and resulting possible bias and inaccuracy in parameter estimates, e.g., 

with CLR and conditional haplotype and genotype methods (CHM and CGM). Note however, 

that we could miss heterogeneity with some analyses, and must constantly be on the alert for this 

possibility. As additional disease genes are identified, interplay with re-analysis of the relative 

risk effects at the primary and secondary disease genes is required.  

 The most complex pattern of an HLA disease association is seen with T1D, the HLA 

DRB1-DQB1 haplotypes and genotypes show a hierarchy from highly predisposing, 

predisposing, intermediate (―neutral‖), protective to highly protective effects. The relative risk 

patterns are seen consistently across all ethnic groups (summarized in the meta-analysis of 

Thomson et al. 2007a). In other cases, such as multiple sclerosis and narcolepsy, there is one 

major predisposing HLA DR-DQ haplotype, with additional smaller effects of other alleles at 

these loci (Barcellos et al. 2006, Mignot et al. 2001, 2007). Studies in non-Caucasian populations 

were also able to tease apart the primary effects of DRB1 in multiple sclerosis (Oksenberg et al. 

2004) and DQB1 in narcolepsy (Mignot et al. 2001) due to a breakdown in the strong LD. 

 

 The following is a summary of the topics and methods described in Section III (Primary 

Disease Genes: Modes of Inheritance):  

 

1.  Relative risk effects are ranked by the ORs of alleles, haplotypes and genotypes with 

the aim of defining specific risk categories of predisposing through protective effects, 

including subsets with homogenous risk. These can be defined with some confidence for 

the more common variants using the methods described below.  

2.  Significantly different relative predispositional effects (RPEs) of alleles, haplotypes or 

genotypes are determined by sequential analyses of the data for heterogeneity, with 

removal of the most significant effects at each stage.    

3.  All pairwise relative risk comparisons of alleles, haplotypes or genotypes extend and 

complement the above analysis in terms of delineating groups of alleles with 

homogeneity of risk within the group and heterogeneity between. The analysis can 

consider more common alleles where the boundaries between differential risk effects are 

clearer, as well as rarer alleles where the boundaries are usually less clear. These results 

are also very pertinent to application of the Unique Combinations Method of Salamon et 

al. (1996) (Section I.E and Section V) to detect amino acids that distinguish between 

heterogeneous risk categories of HLA alleles or haplotypes. 

4.  Modes of inheritance studies can be carried out on genotype data using the AGFAP 

[antigen (allele) genotype frequencies among patients] method and CLR models, affected 
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sib pair IBD values, and combined analyses thereof. With family data selected for the 

presence of at least one affected parent and one or two affected offspring (MPC and MPS 

pedigrees respectively), test for equality (recessive) or not (additive) of the parental 

contributions from the affected versus unaffected parent. Ultimately, all features of the 

data must be explained if the primary gene has been identified, or additional secondary 

genes remain to be identified.  

5. Cross-population and cross-ethnic studies and meta-analyses: If a primary disease 

gene has been identified, then a consistent hierarchy of ORs and differential risk effects 

should be seen across studies and ethnic groups, and disease prevalence should correlate 

with the relative frequencies in ethnic groups of the predisposing, intermediate, and low 

risk alleles, haplotypes and genotypes (see for example Valdes et al. 1997, Thomson et al. 

2007a). Some ethnic groups and not others may show a breakdown in a strong LD pattern 

allowing discrimination of which gene (or genes) is directly involved in disease risk. 

6. Interrelationship of HLA associated diseases: the same alleles or haplotypes may be 

associated with differential risk for a number of diseases, e.g., DRB1*15:01 DQB1*06:02 

is predisposing for multiple sclerosis and narcolepsy while it is very protective for T1D; 

DRB1*03:01 DQB1*02:01 is predisposing for T1D and celiac disease; DRB1*04:01 

DQB1*03:02 is predisposing for T1D and rheumatoid arthritis. It is of particular interest 

to study the genetic interrelationship of these and other HLA associated diseases.     

 

 

 D. Secondary disease genes 

 

We stress again that we must identify all heterogeneity in disease risk at the primary disease 

predisposing gene, including relatively weak effects, before proceeding with conditional analyses 

to detect secondary genetic effects. Otherwise, spurious results in identifying secondary disease 

predisposing genes may be seen resulting from unaccounted for heterogeneity in relative risk 

effects at the primary disease gene at the allele, haplotype, or genotype levels.  

 Taking account of these precautions, with many HLA-associated diseases there is 

evidence of the role in disease risk of additional genes in the HLA region; both other classical 

HLA genes, as well as additional genes across the HLA region. Especially in the latter case, as 

mentioned above, identification of these genes has been as difficult as study of non-HLA disease 

genes, with considerable heterogeneity seen across studies. Many reports of other HLA region 

gene, MSAT, and SNP associations have appeared in the literature. In many of these studies it 

has been difficult to determine if an additional HLA region gene is involved in disease, versus 

the associations reflecting LD with the antigen presenting HLA molecules directly involved in 

disease. However, a number of analytic strategies have been developed to remove the effects of 

LD with the antigen presenting HLA genes directly involved in the disease (Section IV). 

 Notwithstanding, there are many challenges in trying to identify appropriate techniques 

for the analysis of the extensive data generated with detailed study of specific genetic regions. 

Some markers that do not show a single locus association with disease may nevertheless be 

directly involved in disease predisposition; their effects may only become obvious once the data 

are stratified by the effects of a primary disease gene or interaction effects are taken into account. 

Hence, as primary and secondary disease genes are identified, subsequent analyses should 

consider all remaining marker genes, or minimally tagging SNPs thereof, rather than, for 
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example, focusing on a set of markers which initially showed a significant association as a single 

SNP (see Thomson et al. 2008). We emphasize that categories classified as homogenous with 

respect to risk should be continually reevaluated as additional genes involved in disease are 

discovered.    

  Further, associations between markers and disease loci that are not evident with a single 

marker locus may be identified in multi-locus marker analyses using known (from family data, 

although it is rare they will be known with 100% accuracy unless the loci are highly polymorphic 

such as most of the HLA classical loci) or estimated haplotype frequencies (see Single et al. 

2011). With linkage analyses, suspicion of additional disease genes in a region can initially 

present as a secondary peak in an area not in LD with the primary linkage peak. 

 Even with sample sizes in the thousands, with stratification analyses, many cells in the 

data matrix will have very small or zero values, particularly as secondary, in addition to primary, 

disease genes are identified and multi-locus haplotypes are considered. In addition to a lack of 

statistical power in such cases, significance levels reported from application of a software 

package to these data may be spurious due to inappropriate use of a statistical test on rare alleles, 

haplotypes, or genotypes. 

 When secondary genes are identified for diseases with strong primary associations with a 

classical HLA gene(s), they are often reported as independent effects. In most cases, the authors 

are referring to additional (secondary) effects, which is a different issue than a test for 

independence or not of risk effects. In fact, in some cases the effect is only seen on specific high 

risk, or vice versa non-high risk, alleles, haplotypes or genotypes at the primary HLA classical 

gene(s). Care should thus be taken to be very specific about what has been shown as a 

statistically significant effect. 

 Methods to detect genes or markers additional to a primary predisposing gene in a genetic 

region all rely on stratification analyses to take account of the effects of LD with the primary 

predisposing gene(s). With all the methods discussed below, power is an issue even with sample 

sizes in the hundreds or thousands, and as mentioned above, stratification approaches can quickly 

result in small cell sizes. All of the methods described below have been successful in detecting 

the role of additional disease genes in the HLA region, however, the actual genes involved have 

not always been identified with MSAT and SNP typing, and there is considerable heterogeneity 

between studies. 

  

 The following is a summary of the topics and methods described in Section IV 

(Secondary Disease Genes):  

 

1. Matched cases and controls and the homozygous parent linkage and TDT tests: 
These complementary tests each use only a restricted subset of the data. In some cases 

power may be increased by combining data across studies and even ethnic groups; 

however, this gain in power may be countered by loss if there are population or ethnic 

group specific effects. 

2. Conditional haplotype, genotype and logistic regression methods (CHM, CGM, and 

CLR): The basis of specific and overall haplotype or genotype tests, is that if all disease 

risk in a genetic region is explained by a primary gene denoted by locus A, then with 

conditioning on locus A, variation at locus B (which under the null hypothesis has no 

effect on disease) will have the same expected relative frequencies in patients and 
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controls. Deviation from these expectations implicates additional disease predisposing 

genes in the genetic region. Step-wise and CLR can also be used to account for known 

covariates with disease, e.g., age of onset, principle components etc. 

3. Combined association and linkage data: Extending the conditional analyses above, it is 

informative in tests of fit of a putative primary disease gene(s) to all aspects of the data to 

include both association and linkage data, e.g., using the MASC method of Clerget-

Darpoux et al. (1988). 

 

 E. Detecting amino acids at classical HLA genes directly involved in disease risk 

 

When a classical HLA gene has been identified as primary in a disease association, our interest 

then focuses on identifying specific amino acids and combinations thereof that are potentially 

involved in differential disease risk. This is difficult for a number of reasons: the extensive 

polymorphism of the amino acid sites, with most of the variation occurring at functionally 

important sites, and with up to six ―alleles‖ seen at some amino acid sites; the nature of HLA 

polymorphism which is the result of mutation and also gene conversion events which results in a 

patch-work pattern of amino acid variation; and the high LD between many alleles and amino 

acid sites.  

 Peptide motifs important for binding to HLA molecules, including critical residues, have 

been defined. Determining the HLA amino acid residues directly involved in a specific disease 

can facilitate predictions about peptide epitopes that are more, or less, likely to be presented by a 

particular HLA allele. Such knowledge can of course be very important in the design of vaccines 

and our understanding of autoimmunity (see Karp et al. 2010).  

 

 The following is a summary of the topics and methods described in Section V (Detecting 

Amino Acids at Classical HLA Genes Directly Involved in Disease Risk):  

 

1. Within serogroup analyses: comparisons of the amino acid sequences of alleles within 

the same serogroup with differential risk effects versus those within the same risk 

category can implicate amino acids directly involved in disease risk heterogeneity. This 

approach focuses on a smaller number of amino acids to compare and led to for example 

identification of amino acid position 57 of DQB1 in T1D risk. Also it may pick up 

interaction effects that are missed in other analyses, for example amino acid position 86 

of DRB1 in systemic sclerosis and JIA (Karp et al. 2010, Thomson et al. 2010). 

2. Sequence alignment of alleles stratified by risk category: this is most likely to be 

informative when there are only a few risk categories of alleles, and it is not known how 

often the rheumatoid arthritis ―shared epitope‖ phenomenon will be observed; also note 

that there is disease risk heterogeneity within the ―shared epitope‖ set of alleles.  

3. Salamon’s Unique Combinations Method: identifies amino acids that distinguish for 

example a set of high disease risk sequences from all other sequences, or from the set of 

sequences of intermediate, or separately low, disease risk alleles. (The original algorithm 

of Salamon et al. (1996) has been slightly modified (Thomson et al. 2010) and see 

Section V.) Preliminary analyses indicate that this method may be particularly useful in 

more directly detecting amino acids involved in differential disease risk versus those 
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associations due to LD, and also interaction effects. To apply the Unique Combinations 

Method one needs to accurately define sets of alleles with homogenous risk within a set 

and heterogeneity of risk between sets.  

4. Sequence Feature Variant Type (SFVT) analysis: a set of association tests are 

systematically applied focusing on variation (termed variant types - VTs) at biologically 

relevant SFs, which are based on structural and functional features of the protein (Karp et 

al. 2010).   

5. Conditional Haplotype Method (CHM): as described above for detecting primary and 

secondary disease predisposing genes, a series of stratified analyses can be applied to 

detect amino acids directly involved in differential disease risk versus those associations 

with disease due to LD (Karp et al. 2010, Thomson et al. 2010); the difficulty lies in the 

extensive amino acid LD at the HLA loci. Even starting with all pairwise comparisons 

and building up from that, it is difficult to pinpoint residues directly involved in disease 

risk heterogeneity due to the complex patterns of LD. Further, a small number of highly 

polymorphic amino acids often define most allele level variation, excluding the 

possibility of further conditional tests. 

 

 F. Analysis of KIR-HLA disease associations  

 

A role for the KIR loci and their HLA ligands in autoimmune diseases (Khakoo et al. 2004, Li et 

al. 2004, Williams et al. 2005, Khakoo and Carrington 2006, Hollenbach et al. 2009), and 

infectious diseases such as HIV and Hepatitis C (Gaudieri et al. 2005, Khakoo and Carrington 

2006), as well as solid organ and hematopoietic stem cell transplant (Sun et al. 2005, Kunert et 

al. 2007, Gedil et al. 2007) and pregnancy (Lanier 1999, Moffett and Hiby 2007) is now 

established (see Hollenbach et al. 2011a). As with HLA, the KIR loci also have high levels of 

polymorphism and LD, and a clear history of extensive recombination and gene conversion 

events, and evidence of selection acting at the population level (Single et al. 2007a). However, 

the KIR typing systems are not as well developed as those for HLA; they currently often type 

only for presence or absence of a gene and in many cases investigators have to deal with large 

amounts of missing data leading to specific issues in data analyses (Single et al. 2008). Likewise, 

most typing techniques cannot detect or distinguish between loci that may be duplicated on a KIR 

haplotype. In addition, the relationship between the KIR and their HLA ligands dictates 

consideration of interaction effects between these two important polymorphic regions when 

analyzing for disease associations. Details of analysis of KIR data will be provided in a separate 

Methods Manual at a later date (also see Hollenbach et al. 2011a, b). 
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II. Primary Disease Genes: Tests of Linkage and Association 

 

 A. Introduction to HLA associated diseases 

 

The search for associations between genes in the HLA region and specific diseases in humans 

was stimulated by studies in mice showing associations of the mouse major histocompatibility 

(MHC) system (termed H-2) and oncogenic viruses (reviewed in Klein 1975). Initial studies in 

humans showed weak associations with Hodgkin‘s (Amiel et al. 1967) and some other diseases. 

Subsequent studies showed more striking and consistent associations (see Dausset and Svejgaard 

1977). While ABO blood group associations with disease were well known and replicated, the 

odds ratios (ORs) were all small and a mechanism implicating them in disease risk was not clear. 

In contrast, many of the HLA disease associations were quite striking and consistently found 

(some representative examples are given below in Table II.A.1 for some of the earlier studies 

with serological data) and a functional role of immune response region genes was feasible.  

 

Table II.A.1: HLA associated diseases* 

 

 HLA PATIENTS CONTROLS OR 

  

Ankylosing spondylitis 

 (a) A2 64% 50%    1.8 

  B27 94%  9% 158.4 

  Cw1 42%  7%    9.6 

  Cw2 44% 13%    5.3 

 (b) B27 90%  8%  87.8
a
 

 (c) B27 92%  10% 103.5 

Type 1 diabetes 

 (a) B8 37% 22%    2.1
a
 

  B15 23% 15%    2.1
a
  

 (b) DR3 52% 23%     3.6 

  DR4 74%  24%     9.0 

  DR3 or DR4 93%  43%  17.6 

  DR2  4%  29%    0.1 

Multiple sclerosis 

 (a) DR2 67%  25%    6.1 

Rheumatoid arthritis 

 (a) DR4 81%  33%    8.7 

Narcolepsy 

 (a) DR2 95%  33%   38.6 
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Hemochromatosis 

 (a) A3 72%  21%     9.7 

Celiac disease 

 (a) B8 79%  31%    8.4 

  DR3 96%  27%   64.9 

 

* For each disease, the frequency of the presence of an associated HLA allele in homozygotes or heterozygotes is 

given in patients and controls. The letter designation denotes the HLA gene, while the number is assigned to a 
specific allele at the gene. The data shown are older serological level HLA typing, rather than more recent molecular 
typing. Recent data are usually reported as allele, haplotype or genotype frequencies, rather than presence versus 
absence of an allele as above. The data are from various sources, including summaries and references in Thomson 
(1981), Thomson (1983), Thomson et al. (1988). The allele with the strongest association, based on the odds ratio 
(OR), is indicated in bold. Type 1 diabetes (T1D) was previously referred to as juvenile diabetes, and then insulin 
dependent diabetes mellitus (IDDM), before the present designation. 
a
 Based on multiple studies (see Thomson 1981). 

 

 

 With HLA disease associations, the high level of LD between many of the classical HLA 

genes means that multiple disease associations are often observed, some of which may indicate a 

genetic factor directly implicated in disease risk heterogeneity, and others may be due to LD of a 

marker with this locus. This is illustrated by the original associations of the serologically defined 

class I alleles A3, B7, and later the class II DR2 allele with multiple sclerosis in samples of 

European origin. With T1D a similar picture due to LD is seen, with initial A1, B8, and B15, and 

later DR3 and DR4, associations. As class II typing became available (originally DR and later 

DQ and then DP), and later high resolution molecular typing (class II and then class I genes), 

these and many other diseases showed a stronger association with the HLA class II genes (usually 

DRB1 and/or DQB1); mostly based on higher ORs, and also that the class I associations could 

mostly be explained by LD with the class II genes (Tiwari and Terasaki 1985, Lechler 1994, 

Thorsby 1997, Thorsby et al. 2007). Exceptions are for example, ankylosing spondilitis and its 

primary B27 association, psoriasis and C6, chronic berrylium disease and  its association with 

glutamic acid at amino acid position 69 of HLA DPB1 (Snyder et al. 2008), and 

hemochromatosis, where the initial association was with A3, but the primary gene mapped to the 

extended HLA region.  

 Affected sib pair methods were also used early in the study of HLA associated diseases. 

Deviations from the Mendelian random expectations of 25%, 50%, and 25% that two affected 

sibs will on average share 2, 1, and 0 parental chromosomes in common identical by descent 

(IBD) implicate a disease predisposing gene in the region. Linkage of the HLA region with T1D 

was initially demonstrated with 15 affected sib pairs (p<0.001) (Cudworth and Woodrow 1975) 

with a mean sharing IBD value of 0.81 (compared to the expectation of 0.5 in the absence of a 

disease predisposing gene in the region). These values were validated in a number of studies, 

including the meta-analysis of Payami et al. (1985) (see Table II.A.2). Other HLA-associated 

diseases such as rheumatoid arthritis and multiple sclerosis required much larger sample sizes, in 

the hundreds, to get statistically significant linkage. However, even these numbers are quite 

moderate. Use of MSAT and SNP markers in lieu of classical HLA typing in genome-wide 

linkage scans can make it more difficult to detect linkages. 
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Table II.A.2: Affected sib pair identity by descent values for type 1 diabetes (T1D) 

 

A. Cudworth and Woodrow 1975 

IBD Sharing: 2 1 0  

Observed 67%  27% 6% Total 15 

 2
2

   = 14.07, p < 0.001, mean sharing = 0.805 

 

B. Payami et al. 1985, 538 families 

IBD Sharing: 2 1 0 

Observed: 373 283 55 Total 711 

 52% 40% 8% 

 2
2

   = 314.03, p < 10
-5

, mean sharing = 0.724 

 

 

 Initial modeling of HLA disease associations assumed that the serologically HLA defined 

alleles were markers for closely linked disease predisposing genes, which were often assumed to 

have recessive or dominant modes of inheritance (see e.g., Thomson and Bodmer 1977a, b). This 

continued even after elucidation of the role of MHC molecules in the adaptive immune response 

via MHC restriction whereby T-cell recognition of infected cells requires a combined signal from 

both MHC molecules and pathogen peptides (Zinkernagel and Doherty 1974). MHC restriction 

allowed the high polymorphism of MHC molecules to be interpreted in a functional sense. 

Doherty and Zinkernagel (1975) reasoned that individuals heterozygous at MHC loci would be at 

a selective advantage as they could mount an immune response across a broader range of 

pathogens. Many lines of evidence support a role of selection as well as reproductive 

mechanisms in shaping MHC variation (reviewed in Meyer and Thomson 2001, also see Solberg 

et al. 2008).  

 The demonstration in the 1980‘s that MHC molecules directly bind peptides that are then 

presented to T-cells (Guillet et al. 1986), combined with increasing disease data, focused 

attention more on a direct role of the HLA antigen presenting molecules in disease, including 

auto-immune responses. It turns out that the ―simple‖ disease models described above were 

nonetheless very instructive in the development of our understanding of HLA disease 

associations, and in some instances continue to be so today.  

 With molecular typing and examination of LD patterns and conditional haplotype 

analyses, the association of the haplotype DRB1*15:01 DQA1*01:02 DQB1*06:02 (the 

serological designation DR2 was later split into DR15 and DR16) was shown to be the primary 

multiple sclerosis association in Europeans. With T1D, the data not only showed evidence of a 

stronger, hence possibly direct, role of DR3 and DR4 in disease risk, but also excess risk with the 

heterozygous combination B8/B15 and later DR3/DR4 over either homozygote (Svejgaard et al. 

1980, Svejgaard and Ryder 1981, Rotter et al. 1983, Louis and Thomson 1986, Thomson et al. 

1988).  

 Cross ethnic studies in particular can be very important in distinguishing between the 

effects of the DRB1, DQA1, and DQB1 genes, which are in very strong LD. For T1D both DRB1 



   22 

and DQB1 are directly involved in disease with a complex hierarchy of highly predisposing, 

predisposing, intermediate, protective, and highly protective effects of both haplotypes and 

genotypes (see for example, Thomson et al. 2007a, Erlich et al. 2008 and references therein). In 

Caucasian populations, the three most common T1D predisposing haplotypes are DRB1*03:01 

DQB1*02:01, DRB1*04:01 DQB1*03:02, and DRB1*04:04 DQB1*03:02, and a strong 

protective effect is seen for DRB1*15:01 DQB1*06:02 (see summary Table III.B.1 given later). 

Further, the DR-DQ haplotypes show consistency of the hierarchy of ORs and relative risk 

effects, even in ethnic groups where for example the high risk DR3 and/or DR4 haplotypes are 

missing (see e.g., Thomson et al. 2007a). The role of DQB1 in T1D risk was demonstrated in 

many studies via differential risk of DRB1*04:01 on DQB1*03:02 (predisposing) versus 

DQB1*03:01 (protective) haplotypes (Todd et al. 1987, Horn et al. 1988). The role of DRB1 in 

T1D risk was demonstrated by a hierarchy for DR4 DQB1*03:02 haplotypes in various studies. 

Using a large cross ethnic meta-analysis, Thomson et al. (2007a) showed the following 

significant risk effects DRB1*04:05 = *04:01 = *04:02 > *04:04 > *04:03 (= denotes no 

significant risk difference detected, > denotes a significant risk difference; these are all on 

DQB1*03:02 haplotypes).  

 Studies in non-Caucasian populations were also able to tease apart the primary effects of 

DRB1 in multiple sclerosis (Oksenberg et al. 2004) and DQB1 in narcolepsy (Mignot et al. 

2001); in both multiple sclerosis and narcolepsy, the DRB1*15:01 DQB1*06:02 haplotype is 

predisposing in Caucasians, and of interest, as discussed above, this is a highly protective 

haplotype in T1D. 

 

B. HLA nomenclature, ambiguity reduction, and population data analyses 

 

HLA typing methods and nomenclature have evolved over time: the recent revised nomenclature 

uses four colon-delimited fields, allowing more than 2 digits of variation (i.e., removing the 

limitation of only up to 99 variants) per field (IMGT/HLA database release 3.0.0 April 1, 2010, 

and release 3.5.0 July 14, 2011: http://www.ebi.ac.uk/imgt/hla/). Different typing methods may 

not detect the same sets of alleles, nor might they resolve allele and genotype ambiguities in the 

same way, and hence could give different results for the same sample. Because of this the 

Immunogenomics Data Analysis Working Group (IDAWG) (www.immunogenomics.org),), an 

international collaboration of investigators working in various aspects of immunogenomics, has 

been formed. The goals of IDAWG are to facilitate the sharing of immunogenomic data, e.g., 

HLA and KIR, and to foster the consistent analysis and interpretation of those data by the 

immunogenomics community and the larger genomics communities (see www. 

.immunogenomics.org, the ―Proposal for HLA Data Validation‖ at https://www.immport.org, and 

Gourraud et al. (2011) and Hollenbach et al. (2011b).  We encourage researchers to format and 

archive their data in accordance with the standards proposed by the IDAWG. 

 IDAWG has partnered with the BISC (Bioinformatics Integration Support Contract) to 

develop the ―HLA Silver Standard‖ for HLA genotype data collection. While any data analyzed 

are still subject to errors based on the set of rules used to make ―calls,‖ the process used to make 

the calls (and any inherent biases) would now be transparent. This is particularly important for 

developing appropriate binning rules for studies with data that are heterogeneous with respect to 

time, and/or meta-analyses of data. An algorithm for ambiguity reduction using a set of rules 

developed by Steven J. Mack and Richard Single, based on ―common and well documented‖ 

(CWD) alleles (Cano et al. 2007) is part of the BISC HLA data submission (see ―HLA 

http://www.ebi.ac.uk/imgt/hla/
http://www.immunogenomics.org/
http://www.igdawg.org/
http://www.igdawg.org/
https://www.immport.org/
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Guidelines‖ and ―Proposal for HLA Data Validation‖) (https://www.immport.org, 

www.immunogenomics.org). 

 Spurred by the recent new HLA nomenclature adoption, current software developed by 

IDAWG includes two allele name translation applications available either for download (The 

Allele Name Translation Tool, or ANTT) or use over the internet (Update NomenCLature, or 

UNCL), both of which translate the alleles in an entire dataset. Current IDAWG projects include 

the development of a biostatistical framework for the integrative analyses of HLA and KIR data 

(as well as data from any highly polymorphic genomic region). This framework will eventually 

succeed the existing PyPop framework described below. However, until then, the PyPop modules 

will be appropriately modified to take account of larger data set sizes if necessary (e.g. PyPop is 

currently limited to 5,000 individuals for the estimation of haplotypes and calculation of LD 

values), as well as the new nomenclature.   

 PyPop (Python for Population Genomics) (www.pypop.org, current release version 0.7.0.) 

(Lancaster et al. 2003, 2007a, b) is a software framework for analyzing large-scale multi-locus 

genomic population level data. It can also be applied to patient data with the caveat that the 

haplotype estimation module assumes HWP; when there is a strong disease association this 

assumption may not apply for patient data, except for a recessive disease model. Although 

applicable to any genomic region, PyPop was developed specifically for the analysis of highly 

polymorphic HLA data starting with the 13
th

 International Histocompatibility Workshop in 2003 

and continuing, as available software packages were at that time, and many still are, inadequate 

for HLA (and KIR) data analyses. PyPop is also integrated into ImmPort, the Immunology 

Database and Analysis Portal (https://www.immport.org).   

 PyPop is open source, cross platform, modular, and facilitates meta-analyses. The 

modules include: (1) Allele counts (including a filter module to ensure that allele names are 

valid, and ―binning‖ rules, that can be modified by the user, to allow across population analyses), 

(2) Hardy Weinberg overall testing of genotype data and individual genotype level tests [in an 

upcoming release tests of all heterozygotes/homozygotes, and all heterozygotes for a specific 

allele will be included, and in future work, the issue of how to handle cut-offs for rare alleles and 

genotypes (e.g., identifying or excluding the p-values of tests that are not biologically 

reasonable), will be addressed], (3) Neutrality tests of the allele frequency distributions, (4) 

Haplotype and LD estimation, and measures and testing of significance of LD, for specified locus 

combinations (pairwise, triples, and other combinations of up to eight loci at a time), (5) Allele to 

amino acid translation and amino acid level analyses of LD, Hardy Weinberg proportions and 

neutrality. (Note that PyPop also accepts sequence data as input.) 

 HLA allele and haplotype frequencies vary across populations, geographic regions and 

ethnic groups (Meyer and Thomson 2001, Meyer et al. 2006, Meyer et al. 2007, Single et al. 

2007b, Solberg et al. 2008). These data are important regarding potential heterogeneity in disease 

studies. Population level allele-frequency data and HLA allele frequency maps are available from 

a recent comprehensive meta-analysis of HLA population data (Solberg et al. 2008) is available 

at www.pypop.org/popdata).  

 Since common HLA alleles are directly involved in disease, study of population level 

variation complements disease studies. Differences in disease prevalence for T1D between ethnic 

groups correlate strongly with their known differential frequencies of high, intermediate, and low 

risk HLA DR-DQ haplotypes and genotypes (Valdes et al. 1997). Studying evidence of selection 

and other features of the evolutionary history of a genetic locus and region involved in disease is 

an important corollary to all HLA disease association studies.  

https://www.immport.org/
http://www.pypop.org/
https://www.immport.org/
http://www.pypop.org/popdata
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C. Family data and controls (AFBACs) 

 

Control allele frequencies with nuclear family data 

The use of nuclear family data (two parents and their children) to estimate control marker allele 

frequencies (and similarly haplotype frequencies) was introduced, with application to HLA data, 

by Rubenstein et al. (1981), Field et al. (1986), and Falk and Rubenstein (1987). In families 

ascertained for the presence of at least one affected child, termed S (simplex) pedigrees (also 

referred to as trio families), the two parental marker alleles not transmitted to the affected child 

(the proband) are used as population (control) alleles (see Figure II.C.1a). These are referred to as 

AFBACs (affected family based controls). This matched design for patient (parental transmitted) 

and ―control‖ (parental non-transmitted) marker alleles avoids ethnic confounding in the case of 

a stratified population (Khoury 1994, Schaid and Sommer 1993, 1994). 

 Field (1989) and Thomson et al. (1989) extended this AFBAC approach to nuclear 

pedigrees ascertained for the presence of at least two affected sibs, termed MSP (multiplex sib 

pairs) pedigrees (although referred to then as MS pedigrees, for multiplex sibs); using the alleles 

from both parents that are never transmitted to either sib in the affected sib pair as the ―control‖ 

population (Figure II.C.1c). Using a novel ordered notation, Thomson (1995a, b) provided a 

complete theoretical analysis of nuclear family based marker allele distributions. Using a single 

gene disease model with random mating, the validity of the results outlined above for the 

AFBAC method for S (simplex) and MSP (multiplex sib pairs) pedigrees were confirmed.  

Additionally MPC (multiplex parent-child) and MPS (multiplex parent-sib pairs) 

ascertainment schemes were considered: these extend the S and MSP ascertainment schemes to 

also include at least one affected parent. The non- or never-transmitted alleles respectively from 

the unaffected parent form the respective AFBAC populations (Figures II.C.1b and d). Similar 

extensions apply to other ascertainment schemes, e.g., with ascertainment based on the presence 

of at least three affected sibs in a nuclear family, the AFBACs are the parental alleles never 

transmitted to any of the three affected sibs (Payami et al. 1985). 

   

Figure II.C.1: Affected Family Based Controls (AFBACs) for Four Ascertainment Schemes 

 

(a)  Affected Child (S)                   (b) Affected Parent Child (MPC) 

       AB      CD          AB            CD 

   

 

CONTROLS CONTROLS 

                

 AC   B, D   AC       D 
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(c)  Affected Sib Pairs (MSP)    (d) Affected Parent Sibs (MPS) 

       AB          CD       AB         CD 

     

 

CONTROLS CONTROLS 
   

       AC    AC        B, D                AC     AC        D 

 AD   B   - AD     
- 

 BC    
-   D BC     D 

 BD   
 -    -

 BD     
-
 

 

* The four family based ascertainment schemes are selected on the presence of at least: (a) one affected child (S), (b) 
one affected child and one affected parent (MPC), (c) two affected sibs (MSP), and (d) two affected sibs and one 
affected parent (MPS). As noted in the text, additional family members (parent or sib) may be affected within each of 
these schemes; they occur with frequencies expected under the disease model and are retained in analyses. For the 
MSP and MPS ascertainment schemes, using the ordered notation of Thomson (1995a) the first affected sib 
ascertained is always denoted by genotype AC, with the four possible genotypes for the second affected sib listed.    

 

 

AFBAC equations 

The equations below are from Thomson (1995a, b). They apply to the case of a marker allele 

sufficiently closely linked to the disease predisposing allele that we can assume the 

recombination fraction between them is zero (  = 0). (The equations in the case of a non-zero 

recombination value are also given in these papers.) The subscripts i and j refer to the two 

paternal alleles (AB), ordered such that allele i (A) is transmitted to the affected sib, or first 

affected sib, in each pedigree type (see Figure II.C.1a), and similarly for k and l for the two 

maternal alleles (CD). For affected sib pair pedigrees (MSP and MPS), we denote the four 

possible genotypes (AC, AD, BC, BD) of the second affected sib in relation to that (AC) of the 

first affected sib, with parameters that reflect their degree of sharing identical by descent (IBD) of 

the two parental alleles with the first affected sib: sharing both parental alleles IBD (denoted 

1010) (both affected sibs share the genotype AC), sharing the paternal, but not maternal alleles 

IBD ( 1001) (the first affected sib has genotype AC, and the 2
nd

 affected sib has the genotype AD), 

sharing the maternal, but not paternal alleles IBD ( 0110) (AC and BC), and sharing no parental 

alleles IBD ( 0101) (AC and BD). The more common notation combines the two share 1 

categories, and denotes share 2 parental alleles IBD by X, share 1 by Y, and share 0 by Z. In the 

absence of a disease association: 1010 = 1001 = 0110 = 0101 = ¼, i.e., X = ¼, Y = ½, Z = ¼.

 For simplex (S), multiplex parent-child (MPC), multiplex sib pairs (MSP), and multiplex 

parent-sib pairs (MPS) pedigrees the following equations hold in the general case, assuming a 

random mating population and  = 0. The equations for the MPC and MPS pedigrees relate to the 
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cases where the father is the affected parent, with appropriate modification if the mother is 

affected. 

 

Sijkl = pj pl Si+k+,  

 

MPCijkl = pl Sijk+,  

 

MSPijkl 1010 = pj pl MSPi+k+ 1010, 

MSPijkl 1001 = pj MSPi+kl 1001,  

MSPijkl 0110 = pl MSPijk+ 0110,  

MSPijkl 0101 does not simplify, 

 

MPSijkl 1010 = pl MPSijk+ 1010, 

MPSijkl 1001 does not simplify,  

MPSijkl 0110 = pl MPSijk+ 0110,  

MPSijkl 0101 does not simplify. 

 

 In S (simplex) pedigrees, with  = 0, the two AFBAC non-transmitted parental alleles 

from each pedigree thus give unbiased estimates of population (control) marker-allele 

frequencies. Similarly, with appropriate modifications, for the other pedigree types: for MSP 

(affected sib pair) pedigrees the AFBACs are the parental alleles never-transmitted to either 

affected sib. For MPC and MPS pedigrees (multiplex parent-child and multiplex parent-sib pairs 

respectively), with at least one affected parent, the same principles apply, i.e., the non- or never-

transmitted alleles respectively from the unaffected parent form the AFBACs.  

  

Application of the AFBAC method 

For both S (simplex) and MSP (affected sib pair) ascertainment schemes there will be some 

pedigrees with a parent affected, and, although the pedigrees will then look like those obtained 

through MPC (at least one affected parent and one affected child) and MPS (at least one affected 

parent and two affected sibs) ascertainment criteria, respectively, they are still used in the S and 

MSP categories for analyses (provided the ascertainment scheme was strictly adhered to), i.e., all 

parents contribute appropriately to the AFBACs. Similarly, with pedigrees from S and MPC 

ascertainment, there will in some families be a second affected sib (or third or more), again, if the 

ascertainment was strictly based on the presence of at least one affected child (the proband), then 

such pedigrees are retained under the S and MPC ascertainment schemes, and these additional 

affected children (or unaffected children) do not enter into the AFBAC calculations. This is 

because the affected parent, or additional affected child, or both, occur in the frequencies 

expected under the ascertainment scheme applied, and are accounted for in the expectations. 

 Data will rarely be specifically sampled for MPC and even less so for MPS pedigrees. 

However, these data can be extracted without bias from S and MSP data sets for additional 
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specific analyses, including unique information. Specific tests using the different pedigree types 

are detailed in Thomson (1995a, b).  

 Control genotype frequencies for S and MS pedigrees can be obtained in two ways. The 

first is by constructing genotypes using the paternal and maternal non-transmitted alleles in each 

S pedigree (2n total), i.e., the genotypes denoted BD in Figure II.C.1a, and similarly in MSP 

pedigrees but now only using those pedigrees where both affected sibs share the same two 

parental alleles, i.e., BD from the sibs in row 1 who share both parental alleles IBD ( 1010) 

(Figure II.C.1c). The usual Hardy Weinberg proportions (HWP) test can be applied to these 

control genotypes. A maternal-fetal interaction effect could cause deviations from HWP. 

Alternatively, one can take allele (or haplotype) AFBACs and form a control population 

assuming HWP (with a sample size of half the number of AFBACs).  

 Note that for transmitted alleles in MSP pedigrees, the two affected sibs are not 

independent, and cannot be included as independent data points in any analyses. The average of 

the two sibling‘s genotypes is often used in analyses.  

 For S pedigrees, application of the AFBAC method is simple even in cases where the 

markers are not highly polymorphic; subtracting the allele counts (2n, where n is the number of 

families) of the proband (affected child) from the total allele counts from the two parents (4n) 

gives the AFBAC (2n) allele counts (Barcellos et al. 1997). In other ascertainment schemes, the 

highly polymorphic nature of HLA data makes their application feasible to calculate the 

AFBACs, and the more HLA genes typed the less any bias. If some parental typings are missing, 

the non-transmitted alleles from this parent can often be calculated if additional children have 

been typed, this however will be a biased estimate resulting from the fact that homozygous 

parents cannot be distinguished. Extreme caution must be applied in such applications, and it is 

not necessarily recommended at all. 

 The AFBAC method has often mistakenly been equated to a heterogeneity test of 

association of patient and AFBAC frequencies. The AFBAC method per se is for obtaining an 

unbiased estimate of marker allele frequencies, and does not refer to any specific test of 

association/linkage. The transmission disequilibrium test (TDT) of Spielman et al. (1993) is the 

appropriate statistical test to apply, since it tests for deviations from the null hypothesis expected 

50:50 ratio of transmitted and non-transmitted alleles from parents heterozygous for the marker 

alleles, and theoretically is robust to stratification effects. However, note that in the case of a 

homogenous population sample, the results from a TDT and contingency table analysis will be 

very similar.  

 For extended pedigree data, the pedigree disequilibrium test (PDT) can be applied which 

also includes disease discordant sibships (Martin et al. 2000, 2003, and see Barcellos et al. 2006 

for application to multiple sclerosis data). All family genotypes should be examined for 

Mendelian inconsistencies using for example PEDCHECK (O‘Connell and Weeks 1998).  

 

D. Tests of marker associations with disease  

 

Case/control association studies 

A major concern with all disease association studies is heterogeneity between cases and controls 

due to allele frequency differences related to population stratification. If such heterogeneity is not 

taken into account, it may be mistakenly interpreted as association of a marker locus (loci) with 
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disease. This was less problematic with previous studies of classical HLA locus associations with 

disease, where studies were usually limited to an ethnic group within a geographic location. But 

it is particularly pertinent to large scale studies, e.g., GWASs, given the known heterogeneity in 

for example Caucasians across Europe for HLA frequencies (see Solberg et al. 2008) and also 

some SNPs.  Population substructure, e.g. for Caucasians north/south European, can be detected 

using principal components analysis (PCA) in for example EIGENSTRAT (Price et al. 2006) or 

using ancestry informative markers (AIMs) (see for example Pritchard et al. 2000, Seldin and 

Price 2008), and outliers removed from further study. The major PCs from the remaining data 

can be incorporated as covariates in the association analyses, potentially increasing power and 

avoiding stratification effects.  

 Analyses of HLA association case/control data have until recently used mostly standard 

chi-square tests of heterogeneity. Initial studies, with serological typing and a high frequency of 

blank alleles at the classical HLA loci, were analyzed based on presence versus absence of a 

specific allele, since homozygotes versus heterozygotes for a blank allele could not be 

distinguished. With molecular typing, this issue was mainly removed, and the first test applied 

would be an overall test of heterogeneity of all alleles between cases and controls (with 

appropriate binning of rare alleles). Individual allele contributions to the significance of an 

overall test, combined with consideration of ORs, and the frequencies of the alleles (which 

influence significance levels) are the first step in detecting all disease risk heterogeneity at the 

associated locus. See Tables III.B.1 and III.C.1 later for examples. (Note that the test of each 

individual allele‘s contribution to the overall significance are based on a chi-square with 1 df; 

these individual p-values are biased as the assumption of a 1 df chi-square is incorrect, and 

conservative, the p-values can be used however for a relative ranking of the allelic effects.) 

 Association analyses using logistic regression (LR) are now also used in case/control 

studies. Logistic regression is a form of generalized linear modeling for data with a dichotomous, 

or binary, outcome variable, such as case/control data where the outcome is either ‗affected‘ or 

‗unaffected.‘ Among its advantages, logistic regression provides a means to develop association 

models that include the contribution of both quantitative and qualitative covariates, which can 

involve cumbersome stratification procedures in contingency table heterogeneity testing; logistic 

regression is a critical tool in the analysis of complex multivariate datasets.  

 However, attention must be paid to how both quantitative and qualitative variables are 

coded, because interpretation of the ORs can greatly vary (Hollenbach et al. 2011a). A 

disadvantage of logistic regression analysis is a tendency to overestimate ORs (Nemes et al. 

2009) in sample sizes <500, possibly leading to erroneous conclusions. Therefore, as with any 

statistical method, care must be taken in both the application and interpretation of results in 

logistic regression analyses. In addition, it is important that the data be reported in a manner, for 

example a table, which allows readers to reanalyze the data. 

 Logistic regression analysis is always performed using computer software. While many 

commercial (e.g., SAS, SPSS, STATA) and free (e.g. PLINK, see Purcell et al. 2007) software 

packages can be used for logistic regression, many are not suitable for polymorphic HLA (or 

KIR) data. For example PLINK performs logistic regression for SNP or CNV (copy number 

variant) data and will not handle the level of polymorphism typical of HLA data. While HLA 

data may be recoded for conditional analysis of SNP or CNV data in PLINK, this will depend on 

the specific research question, and except for cases with only one HLA allele associated with 

disease (versus the rest of the alleles at that locus having homogeneous relative risk effects), this 

is not recommended. There are also several packages and standard functions for the R language 
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(e.g., the ‗glm‘ function in the base package) that can perform logistic regression, but extreme 

care must again be taken in the coding of HLA data, as many of these functions are not designed 

to handle high levels of polymorphism.  

 A regression analysis produces a model that includes all of the variables that are useful in 

predicting the (dichotomous) outcome variable. Logistic regression provides an OR for each 

variable involved in predicting outcome, and can be particularly useful in HLA studies that must 

account for a number of cofactors in assessing associations with complex diseases. Several 

options are available in building the most parsimonious model, i.e., the one explaining the 

maximum of the variance with the minimal number of variables. A backward stepwise approach 

can be particularly productive in an exploratory analysis; the initial (full model) starts with 

inclusion of all candidate variables; these are tested one by one for statistical significance, 

deleting any that are not significant. This procedure allows the investigator to eliminate 

noncontributing variables and build a more parsimonious model. A forward stepwise approach 

can be more robust when large numbers of variables are studied. In this procedure, the most 

significant variables are successively added to the model, until the addition of variables does not 

contribute to a significant increase in the variance explained by the model. 

  

Family based association studies 

Ott (1989), Knapp et al. (1993), Spielman et al. (1993), and Thomson (1995a, b) demonstrated 

that, with nuclear-family based data, tests of association are confounded with tests of linkage. No 

matter which test is used, e.g., a contingency table test of heterogeneity, the haplotype relative 

risk (HRR) (Ott 1989), the TDT (Spielman et al. 1993), logistic regression (LR) (using probands 

and AFBACs), the property that only associations of marker genes linked to a disease gene (  < 

0.5) will be detected holds for all family-based tests. This is in contrast to  case/control 

association studies where population stratification can lead to false association results even with 

unlinked genes. However, an assumption of random mating is required for all tests except the 

TDT; hence it is the preferred test. 

 

 E. Stratified association tests, age of onset, and maternal-fetal effects 

 

Use of allele sharing IBD values can increase the power of association studies (Fingerlin et al. 

2004, Thomson 1995b). Vice versa, partitioning linkage analyses by genotypes of associated 

alleles can also increase power (Clerget-Darpoux et al. 1995; Greenberg 1993; Greenberg and 

Doneshka 1996; Hodge 1993; Li et al. 2004). With T1D, IDDM2 (the VNTR 5' to the insulin 

gene), and study of affected sib pair data, Dizier et al. (1994) show that without stratification, the 

IBD frequencies are 0.24, 0.53, and 0.23 and these are not significant from random expectations. 

However, the distribution is quite different when stratified by the genotype of the index sib: 0.27, 

0.60, and 0.13 for genotype 11, and 0.07, 0.53, and 0.40 for the combined other genotypes. Li et 

al. (2004) have also shown that there can be large variability in linkage scores when families are 

stratified by the genotype of a single, randomly selected sib. 

 Age of onset effects may be important for both primary and secondary disease gene 

effects, both for HLA and non-HLA regions [for HLA and T1D see e.g., Valdes et al. (1999, 

2005a); for Alzheimer‘s disease and APOE see Blacker et al. (1997); for Alzheimer‘s disease and 

HLA, see Zareparsi et al. (2002)]. The power of the TDT and  case/control association tests can 

be greatly affected by the age of onset of patients in the study (Li and Hsu 2000). Further, age-
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related fluctuations in allele and genotype frequencies in controls can lead to loss of power and 

increase in type 1 error rates; Payami et al. (2005) show that APOE frequencies in controls can 

vary by twofold in the extreme cases due to age and gender. For cytochrome P450 2D6 

(CYP2D6) the age and gender-specific fluctuations in controls were less pronounced than for 

APOE and non significant; however, there were significant age-dependent departures from HW, 

even for the youngest cohort. Further, gender differences should also be investigated. 

 As for association studies, age of onset effects which are not incorporated into a linkage 

analysis can drastically reduce power (Hsu et al. 2002; Li 1999; Li and Hsu 2000). The true 

disease model (unknown for complex diseases), especially common variant versus rare variants 

with extensive allelic heterogeneity, will influence whether association or linkage studies are 

more powerful (Pritchard 2001; Risch and Merikangas 1996) 

 For family data, we have discussed above (Section II.D) comparison of non-transmitted 

alleles (AFBACs) from mothers (termed NIMAs—non-inherited maternal antigens) versus 

fathers (NIPAs—non-inherited paternal antigens) overall and based on specific genotypes of the 

proband. Maternal offspring compatibility (see Bronson et al. 2009), parent of origin and NIMA 

effects in autoimmune diseases have been seen, but are not well replicated. The exposure to 

NIMA via several different mechanisms may shape the immune system of the offspring and 

either predispose or protect against immune reactions including in utero exposure to NIMA, as 

well as postpartum exposure to NIMA mediated by breast-feeding and/or long-term persistence 

of maternal cells in the offspring. With HLA associated diseases NIMA effects should be tested 

for in the overall data as well as in subsets of patients with and without high risk genotypes, and 

for specific genotypes. NIMA effects were first reported in rheumatoid arthritis in mothers of 

DR4-negative patients (ten Wolde et al. 1993), were not seen in the study of Silman et al. (1995), 

but were again reported by Van der Horst-Bruinsma et al. (1998) and Harney et al. (2003). In 

T1D the results are not consistent, with some reports of NIMA effects, e.g., see Pani et al. 

(2002), and other studies not showing this effect (Hermann et al. 2003, Lambert et al. 2003, 

Bronson et al. 2009). 

 Genomic imprinting has been implicated in susceptibility to complex diseases such as 

systemic lupus erythematosus and other HLA-associated autoimmune conditions. Genomic 

imprinting is defined as a phenomenon in which the disease phenotype depends on which parent 

passed on the disease predisposing gene. While much remains to be learned about the underlying 

epigenetic mechanisms involved in imprinting, it has been shown to play a role in several birth 

defects, certain genetic diseases, and cancers, and possibly autoimmunity. Differences in 

maternal and paternal transmission rates of predisposing alleles have been seen in several studies 

of autoimmune diseases including T1D and systemic lupus erythematosus (Bennett et al. 1996, 

Fajardy et al. 2002, Sasaki et al. 1999, Sekigawa et al. 2003).  

 

F. Linkage disequilibrium 

 

If a primary disease gene in the region under study has been identified, the first step in study of 

additional disease genes in the region would be to plot the LD of all marker genes with the 

primary disease gene. Informal inspection would show in most cases a strong correlation of this 

LD pattern with the strength of association of markers with disease (before any stratification 

analyses have been applied and assuming the primary disease gene has been correctly identified). 

Obvious deviations from this pattern would indicate potential additional disease genes (or 
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markers in strong LD with additional disease genes). (If multiple genes have a primary effect, 

these genes are combined together as one ―super-locus‖ combination; haplotypes would need to 

be estimated for some analyses to form the ―alleles‖ at this ―super-locus.‖) 

 What measure of LD should we use when studying marker associations with each other? 

There is no one measure which is perfect, as we are trying to depict multidimensional variables 

(allele frequencies and numbers of alleles at each locus, and the associations (LD) between all 

pairwise combinations of alleles at the two loci) by one overall LD measure. For multiallelic 

markers appropriate extensions of two biallelic measures are often used: the D' statistic is a 

weighted average of the normalized LD statistic between each pair of alleles (Hedrick 1987), and 

the Wn statistic which is a re-expression of the 
2
 statistic normalized to be between zero and 

one (see e.g., Meyer et al. 2006, Single et al. 2007c); the latter measure is more informative in 

most cases with respect to the analyses in this section. When there are only two alleles per locus, 

Wn is equivalent to the correlation coefficient between the two loci, defined as r = 

D/[pApapBpb]
1/2

, where pA,pa and pB,pb are the allele frequencies at the two loci (A and B) 

respectively and D is the standard measure of LD between the two loci.  

 A measure called haplotype specific heterozygosity captures the informativeness with 

respect to association studies of markers on specific haplotypes of the primary disease 

predisposing gene (Malkki et al. 2005). The LD of all markers with each other should also be 

studied and will guide single association versus haplotype analyses. LD and haplotype blocks in 

the HLA region vary based on specific HLA haplotypes (Ahmad et al. 2003, Blomhoff et al. 

2006).  

 We have recently developed a complementary pair of asymmetric measures of the 

strength of pairwise LD for multi-allelic data: these are called conditional linkage disequilibrium 

(CLD) measures. These more accurately reflect the independence or lack of independence for 

genetic variation at two loci than do standard LD measures. For the bi-allelic case they are 

symmetric and equivalent to the correlation coefficient r (most often reported as r
2
 as described 

above). These new CLD measures are particularly relevant to disease association studies: to more 

accurately determine when stratification analyses can be applied to detect primary (major) 

disease predisposing genes, as well as to identify additional disease genes in a genetic region. 

They are also applicable to the study of evolutionary forces such as selection acting on individual 

amino acids of specific genes, or other loci in high LD. The measures can be applied to variation 

at any pair of loci (HLA and other genes, SNP data, MSAT data, and haplotypes thereof, as well 

as biologically relevant sequence features (SFs) (Karp et al. 2010) based on structural and 

functional features of a protein). With SNPs it is recommended for analysis of haplotype block 

data, both for block-block comparisons of LD patterns, and for block to HLA (or other primary 

disease locus) data. A manuscript on this work is in preparation, and also see Single et al. (2011).  

 No LD measure completely captures all pertinent features of the data. Thus, we always 

recommend consideration of other complementary summary measures of the strength and 

structure of LD in multi-allelic data, and also visualization of the LD structure (Barrett et al. 

2005). For SNP data, methods have been developed to consider single marker versus haplotype 

associations with disease (Browning 2006, Browning et al. 2005, Morris 2006, Purcell et al. 

2007). 

 Study of the break down of LD structure, e.g., using the extended haplotype 

homozygosity (EHH) (Sabeti et al. 2002, Voight et al. 2006) can be used to detect selection 

across the genome, and is of particular interest with respect to variants implicated in disease. A 

number of other tests listed in Sabeti et al. (2002) can also be applied to detect selection; power 
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will vary as well as sensitivity to misspecification of the parameters, e.g., the frequency of 

undetected alleles. Tests of selection using LD patterns are also available (Thomson and Klitz 

1987, Klitz and Thomson 1987, Robinson et al. 1991a, 1991b, Grote et al. 1988). We refer 

readers to three recent reviews: Meyer and Thomson (2001), Harris and Meyer (2006), and 

Hedrick (2006).  

 

 

III. Primary Disease Genes: Modes of Inheritance 

 

A. The patient/control (P/C) ratio and estimating relative penetrances 

 

In this section, we assume that a primary disease gene has been identified, and introduce and 

discuss the patient/control (P/C) ratio (Thomson et al. 2007a, 2008). The P/C ratio is defined as 

follows, under the assumption for example that the HLA DR-DQ genes are directly involved in 

disease, as in T1D: 

 

P/C = [freq(DR-DQ)patients] / [freq(DR-DQ)controls],  

             

where freq(.) denotes the frequency of the haplotype or genotype under consideration (or allele or 

SNP or HLA amino acid as appropriate, and multiple combinations thereof) also see Clerget-

Darpoux et al. (1988). The control population is assumed to be a random population level sample 

as this simplifies the parameter estimates. Although this is usually not the case, i.e., controls are 

usually selected based on absence of disease, nonetheless this will not drastically alter any results 

for diseases which are relatively rare, which is the case with most HLA associated diseases.  

 Under the assumption that the primary disease gene has been identified, the P/C ratios 

give a maximum likelihood estimate (MLE) of the relative penetrance values for each genotype 

(fij = wij /T, where wij is the absolute penetrance value and T is the disease prevalence), and 

allele (or haplotype as appropriate) (fi. = wi. /T) (Thomson et al. 2007a, 2008) (Table III.A.1). 

Unfortunately, the P/C ratios per se cannot be directly compared across populations, and 

particularly across ethnic groups, given they are a function of disease prevalence.  However, 

within a population, the ratio for two different genotypes or haplotypes of their P/C ratios is a 

function only of the absolute penetrance values, allowing comparisons across studies and ethnic 

groups, i.e.,  

 

 [P/C AiAj] / [P/C AkAl]   =  fij / fkl  =  wij / wkl,  ij  ≠  kl, and 

 

[P/C Ai] / [P/C Aj]   =  fi. / fj.    =  wi. / wj.,  i  ≠  j. 

 

The population prevalence parameter T cancels from the relative penetrance estimates in this 

case (see Table III.A.1).  
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Table III.A.1: Patient and control frequencies and P/C ratios 

 

 Genotypes Alleles or Haplotypes 

 AiAj Ai 

Controls:  f(AiAj) f(Ai) 

Patient population
 a
:  wij f(AiAj) /T wi. f(Ai) /T 

Patient/control (P/C): wij /T wi· /T 

a
 T = wij f(AiAj) is the disease prevalence. 

 

  

 Under the assumption that the primary disease gene has been identified, the P/C ratios 

give a maximum likelihood estimate of the relative penetrance values for each genotype (these 

are a function of disease prevalence) (Thomson et al. 2007a, 2008). However, the ratio of two 

P/C ratios estimates the ratio of the absolute penetrance values for the two haplotypes or 

genotypes under consideration. Further, it is equivalent to the OR for the comparison of these 

two alleles, haplotypes or genotypes. These ratios of absolute penetrance values may vary 

between populations because they include the averaged effects of non-HLA genes, environmental 

factors, and other HLA genes.  

 In the simplest case the ratio of the absolute penetrance values for the DR-DQ genotypes 

and haplotypes, or other primary disease gene(s), would be the same across all studies. Further, 

the relative rankings based on P/C ratios for a set of alleles, haplotypes or genotypes can be 

compared across populations (see Thomson et al. 2007a, 2008). One reason for consideration of 

the P/C ratio is that when there is a complex hierarchy of predisposing through protective effects 

of alleles, haplotypes, or genotypes, the ORs are then much more complex to interpret than the 

P/C ratios, in that the denominator (comparison group) of the OR calculation contains a mixture 

of alleles with differential risk effects. This is avoided with use of the P/C ratio within a study.  

 As emphasized in Section I, unless we fully understand, and stratify by, all heterogeneity 

in disease risk at the primary disease gene, including relatively weak effects, then application of 

methods to detect secondary disease genes in the region may give spurious results. Also, we need 

to detect all heterogeneity in disease risk at the allele, haplotype, and genotype levels, to 

optimally apply methods to detect the amino acids directly involved in disease risk heterogeneity 

when one or more classical HLA genes is (are) primary. For a primary gene, estimation of 

relative penetrance values from the P/C ratios for alleles, haplotypes, genotypes, and amino acid 

variation, form the base of our study of modes of inheritance and identification of significant 

differential risk categories. Various analysis methods are listed below regarding appropriate, and 

in some cases, complementary statistical tests to consider. 

  

 B. Detecting relative predispositional risk effects (RPEs) and T1D data 

 

In this Section we discuss the relative predispositional effects (RPE) method and in the next 

Section (III.C) we consider tests of risk heterogeneity using all pairwise comparisons, with 
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examples from T1D (Noble et al. 1996), and a subset of JIA patients classified as oligoarticular-

persistent (OP) (Hollenbach et al. 2010, Thomson et al. 2010). Both methods identify significant 

risk heterogeneity of alleles at a primary disease gene, and we recommend application of both 

methods, along with considerations of sample size (hence significance of effects - less frequent 

classes even with stronger effects can contribute less to the overall chi-square (see Thomson et 

al. 2008)) combined with use of ranking by OR and P/C ratios, and meta-analysis results.   

 The RPE method (Payami et al. 1989) identifies heterogeneity in disease risk at the 

primary disease gene; common alleles, haplotypes, or genotypes with the strongest predisposing 

or protective effects are sequentially removed from the analysis until no further heterogeneity in 

risk effects is seen. When, for example, a disease has a strong association (predisposing) with 

one allele, this allows us to determine if the decrease in frequency of other alleles is the expected 

consequence of the increased frequency of the first allele, or if there is a true negative 

(protective) association of some alleles, and vice versa if one allele shows a strong protective 

effect. Payami et al. (1989) showed that after taking account of the DR3 association (p < 

0.00001) with Graves disease (which was well established also from other studies), a significant 

negative (protective) effect was seen for DR5 (p < 0.0001) after removal of the DR3 effect, and 

the remaining alleles showed no significant risk heterogeneity. Similarly, a second positive 

association may be masked by a major strong association with one allele. Also with application 

of RPE analysis, so-called ―neutral‖ (intermediate) effects which are characterized by similar 

allele frequencies in patients and controls, may show significant risk differences between 

predisposing and protective sets of alleles. All these effects are identified with sequential 

application of the RPE method.  

 Determining the order in which alleles, haplotypes or genotypes are sequentially removed 

is not trivial, and requires interplay between the individual contribution to the Chi-square 

heterogeneity test, the ORs or Patient/Control (P/C) ratio (as mentioned above, the OR and P/C 

ratio are often close in value), and the control frequencies. The sample size for each allele is a 

factor in this analysis; more common alleles (predisposing, neutral, and protective) are identified 

with this method. Also, for the same control frequency and equivalent strength of effects, a 

positive association will contribute more to the overall Chi-square than a negative association. 

Also, less frequent classes even with much stronger predisposing or protective effects can 

contribute less to the overall Chi-square. The investigator must weigh these different issues in 

application of the RPE method. 

 As previously mentioned, T1D shows the most complex hierarchy of RPEs at the allele, 

haplotype, genotype, and amino acid level, ranging through very predisposing, predisposing, 

neutral (intermediate), protective, and very protective (for results from a large meta-analysis see 

Thomson et al. 2007a). A small subset of the most common HLA DR-DQ haplotypes, ranked by 

their ORs, are given below in Table III.B.1, with the last three columns showing the overall and 

individual chi-square values in a test of heterogeneity (the third last column), and then after 

sequential removal of the most significant effects (the last two columns). The predisposing DR3 

(for the definition of  HLA DR-DQ abbreviations see the footnote to Table III.B.1), and 

DRB1*04:01 and *04:04 with DQA1*03:01 DQB1*03:02 haplotypes, and the very protective 

DR15 haplotype are removed first. (The same results apply with separate removal of the 

predisposing and the protective haplotypes.) The neutral effect of the DR1 haplotype then shows 

as significant relative to the remaining haplotypes (second last column), and after removal of 

DR1, the relatively homogenous protective category remains, with slight evidence of 

heterogeneity (last column). (A large meta-analysis in Thomson et al. (2007a) verifies 

heterogeneity of this category.) Note that the ranking neutral (intermediate) is relative and 
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dependent on the presence of predisposing and protective haplotypes (or genotypes) in the 

population under study. If the predisposing haplotypes listed here are missing or rare in an ethnic 

group, e.g., Asian, then haplotypes that appear neutral in a Caucasian population with similar 

frequencies in patients and controls, will appear to be predisposing (relatively) in the Asian 

population. 

 

Table III.B.1: RPE Analysis of HLA DR-DQ Haplotype Frequencies in Type 1 Diabetes 

 

DRB1 DQA1 DQB1
a
 T1D(%)

b
 Cont’s(%)

c
 OR

d
 P/C ratio

e
 

2 f
 

2g
 

2h
 

Predisposing 

04:01 03:01 03:02 91 (25.3) 11 (4.0) 8.21*** 6.33 29.7**** - -  

04:04 03:01 03:02 38.5 (10.7) 5 (1.8) 6.54*** 5.94 12.0*** - -  

03:01 05:01 02:01 115 (31.9) 26 (9.4) 4.55*** 3.39 20.4**** - -  

Neutral 

01:01 01:01 05:01 27.5 (7.6) 17 (6.1) 1.27 1.24 0.0 11.2*** -      

Protective 

13:02 01:02 06:04 10.5 (2.9) 12 (4.3) 0.67 0.67 2.6 0.8 4.7*  

04:01 03:01 03:01 6 (1.7) 12 (4.3) 0.38* 0.40 6.9** 0.1 0.4   

07:01 02:01 02:01 6.5 (1.8) 30 (10.8) 0.15*** 0.17 32.3**** 6.1 1.4 

13:01 01:03 06:03 3 (0.8) 18 (6.5) 0.12*** 0.12 21.6**** 4.8* 1.6 

Very protective 

15:01 01:02 06:02 1 (0.3) 43 (15.5) 0.02*** 0.02 70.3**** - 

Others   61 (17.0) 104 (37.3) - - - -                                

 

Total   360 278   195.9**** 23.0**** 8.1 

 
Data from Noble et al. (1996) of 180 affected sib pairs with type 1 diabetes. 
 
a
 HLA DRB1 DQA1 DQB1 haplotypes—the following abbreviations are often used: DR3 (DRB1*03:01 DQA1*05:01 

DQB1*02:01), DR1 (DRB1*01:01 DQA1*01:01 DQB1*05:01), DR7 (DRB1*07:01 DQA1*02:01 DQB1*02:01), and 
DR15 (DRB1*15:01 DQA1*01:02 DQB1*06:02); for the three DR4 haplotypes there is heterogeneity at the DRB1 and 
DQB1 loci, similarly for the two DR13 haplotypes.  

b
 Patient counts and (%), patient counts are the average of the two affected sibs; haplotypes listed have a frequency >4% in at 

least one of the patient or control haplotypes. 
c
 Controls are AFBACs (Thomson 1995a, b). 

d
 Odds ratio (OR) of this haplotype versus all others: * (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001). 

e
 Patient/control (P/C) ratio using frequency data (see Section III.A above) 

f
 

2
 contribution of the individual haplotype in the heterogeneity test of patients versus control haplotypes (1 df) 
(these individual p-values are biased as the assumption of a 1 df chi-square is incorrect, and conservative; the p-
values can be used however for a relative ranking of the allelic effects), and the total chi-square (df = number of 
classes -1) (the ‗other‘ category is not included in the calculations) 

g
 

2
 contribution of the individual haplotype in the RPE heterogeneity test of patients versus control haplotypes after removal of 

the highly protective DR15 haplotype, and the three predisposing haplotypes DRB1*04:01 and 04:04 with DQA1*03:01 
DQB1*03:02 and DR3; the overall test and the individual contribution of DR1 are both highly significant. 

h
 As for previous column, except DR1 is now additionally removed; the overall test is non-significant, with only marginal 

significance for one individual haplotype, so no further rounds of testing are carried out. 
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 The P/C ratios for the HLA DR-DQ haplotypes in T1D are given in column 7. In this 

case, the relative rankings of the HLA DR-DQ haplotypes from most predisposing through most 

protective are the same based on ORs and P/C ratios. As above, this is not always the case, 

although there is usually a very strong correlation between the two values. For haplotypes (or 

genotypes) with a P/C ratio <1, the inverse of this number is used in comparison of relative 

strength with positively associated haplotypes (P/C ratio >1); hence the DR15 very protective 

effect is much stronger than the three haplotypes listed with predisposing effects.  

 Genotype frequencies are given below in Table III.E.3. Note that genotype frequencies 

rapidly become very small in patients, and are always small in controls. For this reason many 

analyses focus on DR-DQ haplotype data, and for genotype data often consider comparisons of 

specific subsets.  

 In the next Section, we consider all pairwise allele risk comparisons using JIA-OP data. 

We give the RPE analysis results for JIA-OP in the next Section, and also for illustration include 

the details of the step by step RPE analysis in Appendix A. 

 

 C. All pairwise relative risk comparisons and JIA-OP data 

 

In addition to application of the RPE method, we strongly urge statistical testing of all pairwise 

allele (or haplotype or genotype) comparisons for heterogeneity. This complements the RPE 

analyses above (Section III.B), and clearly indicates the extent, and possible complexity, of 

disease risk heterogeneity. Some HLA associated diseases show considerable heterogeneity in 

disease risk at the primary gene, for example, T1D as shown above, which at present is the most 

extreme example. Other diseases also show a hierarchy of predisposing, intermediate, and 

protective risk effects, for example JIA-OP as shown in Table III.C.1 below and Appendix A. In 

contrast, some diseases show only one major association, e.g., B27 and ankylosing spondilitis, 

and the DRB1 ―shared epitope‖  and rheumatoid arthritis (Gregerson et al. 1987)—although there 

is risk heterogeneity within the ―shared epitope‖ category of DRB1 alleles— and additional risk 

heterogeneity may be found with analyses of larger sample sizes and high resolution molecular 

typing.  

 Multiple sclerosis has a strong DRB1*15:01 association in Caucasians and initially the 

remaining DRB1 alleles were thought to be homogenous in risk. However, a large study of 

~1300 multiple sclerosis families by Barcellos et al. (2006) validated the role of additional DRB1 

alleles and genotypes in disease risk using a variety of methods including CLR. DRB1*15 was 

strongly associated with disease (p = 7.8E-31), and a dose effect was shown with an OR of 9.8 

for DRB1*15/15. The heterozygote DRB1*15/08 was high risk (OR = 7.7) while DRB1*15/14 

was low risk (OR = 1.9); the ORs for the remaining heterozygotes ranged from 3.5 to 5.0. A 

modest dose effect (recessive) was detected for DRB1*03.  

 We use JIA-OP data (Hollenbach et al. 2010, Thomson et al. 2010) and show the RPE 

analysis results of the common DRB1 alleles (Table III.C.1) and also application of all pairwise 

risk comparisons (Table III.C.2, and Appendix B). The details of each round of application of the 

RPE method to JIA-OP data (Hollenbach et al. 2010, Thomson et al. 2010) are given in 

Appendix A, and the results summarized in column 1 of Table III.C.1 below. (Columns 2 and 3 

are described later with respect to the all pairwise comparisons risk analysis.) The color code for 

the alleles is: predisposing (shaded teal), neutral (intermediate) (shaded light grey), protective 
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(shaded bright pink). Rare alleles which cannot be placed into one of these categories either by 

the RPE method or all pairwise comparisons are shaded green.  

 The RPE analysis of the JIA-OP data set shows considerable overall heterogeneity in risk 

at DRB1 (p < 1.1E-27) (see Appendix A, and Table A.1: DRB1*08:01 (predisposing) and 

DRB1*15:01 and DRB1*07:01 (protective) are the strongest effects (the set of alleles labeled 

Category 1 (removed after the first round of analyses) in column 1). Removal of these alleles still 

gives a highly significant result (p < 4.1E-10), with DRB1*11:04 (predisposing) and 

DRB1*04:01 (protective) as the strongest effects (set labeled 2 in column 1). Note that a strong 

argument could be made for deleting these alleles also at the previous round, and separately for 

only removing DRB1*08:01 (predisposing) at the first round, but neither alters the outcome. 

With removal of these strong effects, there is only minimal evidence of remaining risk 

heterogeneity (p < 0.02), with DRB1*11:03 (p < 0.01) (predisposing) and DRB1*01:03 (p < 

0.02) (protective) the strongest effects (set labeled 3 in column 1 of Table III.C.1). Note that 

these latter p-values would not be significant with corrections for multiple comparisons of either 

the overall tests, or those for individual alleles. Notwithstanding, we mention these results, since 

our principal aim is to detect heterogeneity that may be relevant to detecting additional disease 

genes in a genetic region or identifying the amino acids in the primary disease gene that are 

directly responsible for the disease risk heterogeneity. These results are all compatible with the 

heterogeneity testing of all pairwise allele comparisons (see below), and consideration of ORs 

and P/C ratios (which are similar in these cases). 

 

Table III.C.1: JIA-OP HLA DRB1 allele data ranked by Odds Ratio (OR) 

 

RPE
a
 A

b
 B

c
 DRB1 Pat Con Chi-sq. p-value

 d
 OR CI

e
 CI

e
  

 
          

  Ix *11:03 12 1 6.80 0.009 9.40 1.22 72.49 

1 I Ix *08:01 102 13 48.61 3.1E-12 6.90 3.83 12.43 

2 I Ix *11:04 57 11 20.71 5.3E-06 4.26 2.21 8.20 

   *04:03 9 3 1.68 0.20 2.33 0.63 8.65 

3 II IIx *13:01 90 38 9.99 0.002 1.95 1.31 2.90 

  IIx *01:02 9 5 0.35 0.55 1.39 0.46 4.18 

 II IIx *11:01 60 36 1.42 0.23 1.31 0.85 2.02 

  IIx *09:01 9 6 0.08 0.78 1.16 0.41 3.28 

 II IIx *01:01 74 50 0.52 0.47 1.16 0.79 1.69 

 II IIx *03:01 89 61 0.50 0.48 1.14 0.81 1.62 

  IIx *12:01 10 8 0.006 0.94 0.96 0.38 2.46 

 II IIx *13:02 28 23 0.05 0.82 0.94 0.53 1.64 

   *13:03 10 9 0.11 0.74 0.86 0.34 2.12 

   binned
f
 27 27 0.92 0.34 0.76 0.44 1.31 

   *16:01 6 8 1.05 0.30 0.58 0.20 1.67 

   *14:01 11 18 4.05 0.04 0.46 0.22 0.99 

   *15:02 5 10 3.26 0.07 0.38 0.13 1.12 

 III IIIx *04:04 7 16 6.34 0.01 0.33 0.14 0.81 

1 III IIIx *15:01 38 80 28.24 1.1E-07 0.33 0.22 0.49 

1 III IIIx *07:01 30 65 23.92 1.0E-06 0.33 0.21 0.51 

2 III IIIx *04:01 21 47 18.10 2.1E-05 0.33 0.19 0.55 
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3  IIIx *01:03 4 11 5.42 0.02 0.28 0.09 0.87 

   TOTAL 708 546 182.1 1.1E-27    
 

 
a
 Numbers denote the order of removal due to largest effect(s) in the RPE analysis  

b
 Set A: Based on pairwise allele comparisons, the common alleles are divided into mutually exclusive, and 

significantly different, predisposing (I), neutral (intermediate) (II), and protective (III) categories for use later in 
amino acid comparisons (described in detail below and see Table II.H.2)

 

c
 Set B: The sets I, II, and III above are expanded (indicated by Ix, IIx, and IIIx) to include rare alleles, while 

excluding those alleles which do not clearly fall into one of the 3 risk categories (see below and Appendix B)  
d
 The individual p-values are biased as the assumption of a 1 df chi-square is incorrect, and conservative; the p-

values can be used however for a relative ranking of the allelic effects  
e
 The upper and lower 95% confidence intervals (CIs) for the Odds Ratio (OR) are given 

f
 The binned category consists of all alleles with an expected value < 5 under the chi-square test of heterogeneity of 

patient and control allele counts 

 

 

 The all pairwise risk comparisons is straightforward: the p-values (uncorrected) from a 

chi-square test of heterogeneity of all pairwise DRB1 allele comparisons is given in Table III.C.2 

for alleles that are relatively common in patients or controls in the JIA-OP data. These show a 

most striking pattern of predisposing (shaded teal), neutral (intermediate) (shaded light grey), and 

protective (shaded pink) alleles (these are referred to as categories I, II, and III in column 2 of 

Table II.H.1 above) with risk homogeneity within and risk heterogeneity between the three 

categories. That is, we have strong evidence that we can confidentially assign these alleles into 

nearly mutually exclusive risk categories. 

  

Table III.C.2: Pairwise risk heterogeneity comparison p-values for common HLA DRB1 

alleles and JIA-OP 

 

Reduced data set A - categories I, II, and III        

            

DRB1 *08:01 *11:04 *13:01 *11:01 *01:01 *03:01 *13:02 *04:04 *15:01 *07:01 *04:01 

*08:01  0.3454 0.0004 7E-06 4E-07 1E-07 1E-06 4E-10 1E-18 2E-17 8E-16 

*11:04 0.3454  0.0376 0.0029 0.0006 0.0004 0.0005 1E-06 1E-11 4E-11 4E-10 

*13:01 0.0004 0.0376  0.2186 0.0766 0.0567 0.0496 0.0002 2E-09 1E-08 1E-07 

*11:01 7E-06 0.0029 0.2186  0.6705 0.6201 0.371 0.0054 1E-05 2E-05 7E-05 

*01:01 4E-07 0.0006 0.0766 0.6705  0.9539 0.5604 0.0096 2E-05 4E-05 0.0001 

*03:01 1E-07 0.0004 0.0567 0.6201 0.9539  0.5794 0.0094 1E-05 2E-05 1E-04 

*13:02 1E-06 0.0005 0.0496 0.371 0.5604 0.5794  0.051 0.0055 0.006 0.0084 

*04:04 4E-10 1E-06 0.0002 0.0054 0.0096 0.0094 0.051  0.8678 0.9155 0.9679 

*15:01 1E-18 1E-11 2E-09 1E-05 2E-05 1E-05 0.0055 0.8678  0.9226 0.8521 

*07:01 2E-17 4E-11 1E-08 2E-05 4E-05 2E-05 0.006 0.9155 0.9226  0.9246 

*04:01 8E-16 4E-10 1E-07 7E-05 0.0001 1E-04 0.0084 0.9679 0.8521 0.9246  

 

 

 A perfect risk discrimination pattern is broken only by the comparisons of DRB1*13:02 

with *13:01 and *04:04. Note that there is an ~ 2 fold difference in the OR for the alleles 

DRB1*13:01 and *13:02 which flank the range of the alleles listed as neutral (intermediate) in 

Table III.C.1 so we anticipate that larger sample sizes may show significant risk heterogeneity 
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within this category. Table B.2 of Appendix B extends the alleles considered, such that rarer 

alleles within the bounds of the three categories I, II and II above are now included, and this 

extended set is referred to as categories Ix, IIx, and IIIx, see column 3 of Table III.C.1 above. 

Table B.3 considers all alleles. 

 These data show not only the possibility of heterogeneity within a risk category 

(predisposing, neutral, and protective in this case) but also the fuzziness surrounding these 

categories. The nearly perfect mutually exclusive block structure of the common alleles in Table 

III.C.1 above is illusory for many diseases when looking at all alleles. But, there is value in the 

exercise of building up boundaries in the risk profiles of a subset of alleles. In application of 

some tests, for example the Unique Combinations Method of Salamon et al. (1996) (see Section 

V.C), accurate classification is essential to identify amino acids and combinations thereof unique 

to specific risk categories. Any inaccuracy in risk category assignment may invalidate results. 

However, while many diseases may show a continuum of risk categories, others may not. 

Whichever situation applies to a particular disease, detailed consideration of RPE analysis and 

pairwise risk comparison results are very beneficial.  

 While our examples have emphasized alleles of DRB1 in JIA-OP, and haplotypes of 

DRB1-DQB1 in T1D analyses (unpublished data), we emphasize again that genotype analyses 

are also important, as heterogeneous risk effects may often manifest at this level. Given sample 

size considerations, these may often be restricted to comparisons of specific genotype 

combinations. 

    

 D. Analysis of subsets of the data and the single parent TDT 

 

In the case, for example, of a single allele showing a strong association with disease, e.g., 

DRB1*15:01 and multiple sclerosis and DQB1*06:02 and narcolepsy, it may be beneficial to 

consider subsets of the data to possibly increase the power to detect RPEs of other alleles (and 

also to detect other gene effects). This may be particularly so if the strongly associated allele 

shows a more dominant than recessive mode of inheritance (allowing for incomplete penetrance 

and also so-called sporadic cases of disease, i.e., a base risk of disease regardless of genotype at 

the primary gene). The rationale for this approach is to concentrate on families (or appropriate 

subsets of case/control data) where the effects are not overridden by the predominant risk of one 

or more alleles (or haplotypes or genotypes). With case/control data, one can analyze the RPE‘s 

and all pairwise allele risk comparisons as follows: (1) using all patient data; and then when a 

strong association is found, e.g., DQB1*06:02 and narcolepsy, (2) looking at the distribution of 

DQB1 non-*06:02 alleles in heterozygous patients, and (3) similarly in patients homozygous for 

DQB1 non-*06:02 alleles. The control population is the same in each case, the DQB1 non-

*06:02 alleles: a stratified subset of the controls is not needed, avoiding small sample sizes in the 

controls.    

 Mignot et al. (2007) developed and applied this approach to narcolepsy families where 

neither parent had the DQB1*06:02 allele. In addition, they developed the single parent TDT: in 

simplex (trio) families with a DQB1*06:02 allele transmitted to the proband, the TDT is applied 

to the other parent using only families where this other parent does not have the DQB1*06:02 

allele. Overall, the results indicated that in addition to the well-known strong effect of 

DQB1*06:02, there were additional RPEs of DQB1*03:01 (susceptibility) and DQB1*05:01 

(resistance), replicating previously reported results in  case/control studies where similar 

stratifications were applied (Mignot et al. 2001).  
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 E. Genotype frequencies and tests of modes of inheritance 

 

The AGFAP method 

When a marker allele is strongly associated with a disease predisposing gene the so-called 

antigen (allele) genotype frequencies among patients (AGFAP) method has been informative 

with respect to mode of inheritance - recessive versus additive (dominant expectations are very 

close to those for an additive model; the additive expectations are less cumbersome to express 

and are used throughout) (Thomson and Bodmer 1977a, b, Thomson 1983, 1993, 1995a, b). In 

the case of a linked recessive disease predisposing gene, the genotype frequencies in patients are 

expected to be in HWPs based on the allele frequencies in the patients. However, for other 

disease models, lack of fit to HWPs in patients may signal an associated disease gene rather than 

typing errors.  

 We consider a bi-allelic marker gene denoted A, with alleles denoted A and a, and 

respective frequencies pA and pa. Allele A is positively associated with disease, and we define a 

parameter k such that if D denotes the disease predisposing allele at locus D, then the frequency 

of the haplotype AD is given by kpD. The theoretical expectations under recessive and additive 

models are then given in Table II.E.1. Expectations for multiple alleles are easily obtained, as 

well as the estimates of the parameters ki for each marker allele Ai allowing tests of mode of 

inheritance (Thomson 1993, 1995a). 

 

 

Table III.E.1: Theoretical recessive and additive AGFAP expectations 

 

 AA Aa aa 

Recessive k
 2

 2 k (1-k) (1-k)
 2

 

Additive k pA k (1-pA) + (1-k) pA (1-k) (1-pA) 

 

 

 

 For a recessive disease model, the expectations are HWPs based on the marker allele 

frequencies in patients, which in this case are k, and 1-k respectively for A and a. Before 

discovery of the hemochromatosis gene in the extended HLA region, allele A3 of the HLA class I 

A locus was known to be increased in patients over controls (see Table II.A.1: in Caucasians ~ 

72% of patients had at least one copy of the allele A3 compared to ~ 21% of controls – OR = 

9.7). Application of the AGFAP method correctly indicated a very close fit to recessive 

expectations for hemochromatosis (Thomson 1983, see Table III.E.2A below), and rejected an 

additive model (p<0.001). The hallmark of recessive inheritance is that many more patients will 

be homozygous for the associated allele than under an additive model.  

 For an additive model, most patients are expected to be heterozygous rather than 

homozygous for the associated marker allele: the associated A allele frequency in patients is 

(k+pA)/2. The association of HLA-B27 and ankylosing spondilitis was found early in the study of 

HLA associated disease (see Table II.A.1: in Caucasians ~ 94% of patients had at least one copy 

of the allele B27 compared to ~ 9% of controls – OR = 87.8). Application of the AGFAP method 

(Thomson 1983, see Table III.E.2B below) rejected a recessive model (p<0.001), and showed 

close fit to an additive model.  



   41 

 

Table III.E.2: Application of the AGFAP method to hemochromatosis and ankylosing 

spondilitis data
 a

 

 

A. Hemochromatosis  

 

 A3A3 A3Ax AxAx 

Observed 20 43 21 Total: 84 individuals 

Recessive 20.5 42.0 21.5 ns 

Additive 8.8 55.0 20.2 p<0.001 

 

B. Ankylosing spondilitis  

 

 B27B27 B27Bx BxBx 

Observed 3 70 6 Total: 79 individuals 

Recessive 18.3 39.4 21.3 p<0.001 

Additive 3.5 69.1 6.0 ns 

 
a
 More details are given in Thomson (1983, 1993) (also source references for the data). Ax and Bx denote the non-

A3 and non-B27 alleles respectively. The control allele frequency for A3 is 0.146, and for B27 is 0.048. The 
expectations for the observed data are given for recessive and additive models: for the additive model the 
maximum likelihood estimate (MLE) is used. 

 

 

 

 As stated in Section II.A, initial modeling of HLA disease associations assumed that the 

serologically defined HLA alleles were markers for closely linked disease predisposing genes, as 

is the case with our modeling for the AGFAP method. It turns out that in fact many (most) HLA 

disease associations are due to a primary gene at one or more of the classical HLA antigen 

presenting genes. However, the ―simple‖ disease models described above were nonetheless very 

instructive in the development of our understanding of HLA disease associations, and in many 

instances continue to be so today when there are strong disease associations. Also, additive 

AGFAP expectations continue to hold if we additionally allow for sporadic cases when the 

marker locus is itself directly involved in differential disease risk. 

 Original application of this model to T1D favored a recessive model, further investigation 

of multi-allelic class II HLA DR-DQ locus associations led to discovery of heterogeneity beyond 

this simple model at the genotype and haplotype levels with excess risk of heterozygotes 

DR3/DR4 over both homozygotes (see e.g., Louis and Thomson 1986 and references therein). 

These results highlight the fact that fit to a particular model does not provide verification of that 

model; a more complicated model may apply and it is just that the simpler model is not rejected. 

  For the T1D data in Table III.B.1 common HLA DR-DQ genotype counts and frequencies 

are given in Table III.E.3 for the three common predisposing haplotypes and the ―neutral‖ DR1 

haplotype. Compared to recessive AGFAP expectations (HWPs within the patient group), there 

are excess heterozygotes for DR3 and the two predisposing DR4 haplotypes in this data set 

(DRB1*04:01 and *04:04 with DQA1*03:01 DQB1*03:02) and deficiency of the homozygous 

classes and the heterozygote for these two DR4 haplotypes. Note, as stated above (Section III.E), 

that for multi-allelic systems, the control frequencies for many genotypes immediately become 

small unless the sample size is very large.  
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Table III.E.3: AGFAP recessive analysis of HLA DRB1-DQB1 genotype frequencies in type 1 

diabetes  

 

DRB1 DQB1 / DRB1 DQB1
a 

T1D(%)
b
 AFBACs

c
 Recessive

d 2e
 

 

03:01 02:01 / 04:01 03:02 44 (24.4)   1.0 (0.7) 29.1 (16.1) 7.6** 

03:01 02:01 / 04:04 03:02 21.5 (11.9)   0.5 (0.3) 12.3 (6.8) 6.9**  

03:01 02:01 / 03:01 02:01 10 (5.6)   1.2 (0.9) 18.3 (10.2) 3.8*   

01:01 05:01 / 04:01 03:02   9 (5.0)    0.7 (0.5)  6.9 (3.8) 0.6  

01:01 05:01 / 03:01 02:01   8 (4.4)    1.6 (1.2)  8.7 (4.9) 0.1 

04:01 03:02 / 04:01 03:02   5.5 (3.1)    0.2 (0.2) 11.5 (6.4) 3.1  

04:01 03:02 / 04:04 03:02   4.5 (2.5)    0.2 (0.1)  9.7 (5.4) 2.8  

others     77.5 133.6 83.5 (46.4) 0.4 

Total       180 139  180 

 
Data from Noble et al. (1996) and personal communication. 
 
a
 HLA DRB1 DQB1 genotypes, DQA1 can be inferred from Table III.B.1 

b
 Patient genotype counts and (%), patient counts are the average of the two affected sibs; only genotypes common in patients 

are listed. 
c
 Controls are estimated from AFBACs assuming HWP (Thomson 1995a, b)  

d
 Recessive expectations (Thomson 1983) for cases under the AGFAP analysis; these are HW expectations based on 

the allele frequencies in the patients (from Table III.B.1), p<<0.0001
 

e
 

2
 (df=1) of observed versus recessive expectations for individual patient genotypes: * (p<0.05), ** (p<0.01), *** (p<0.001), 

**** (p<0.0001) 

 

 

 The AGFAP method, and especially its application and similar comparative analyses with 

T1D HLA DR-DQ data, underscores the information content of genotype risk comparisons. In a 

large meta-analysis, Thomson et al. (2007a) confirmed additional specific risk effects that are 

genotype dependent. For example, the well known increased association of DRB1*04:01 

DQB1*03:02 versus DRB1*04:01 DQB1*03:01 with T1D is relatively much stronger in 

combination with DR3 heterozygotes than with DR1 heterozygotes. Analyses of data are thus 

encouraged at the allele, haplotype, and genotype levels as appropriate, including consideration 

of specific appropriate subsets of the data. 

 

Conditional logistic regression 

While application of the AGFAP method and other comparative analyses of genotype data can be 

very informative, as illustrated above, in some situations CLR analyses may be more informative. 

For example, application of the AGFAP method to the PTPN22 RA data of Begovich et al. 

(2004) cannot distinguish between recessive and additive models (assuming a gene in LD with 

the marker) (see Thomson et al. 2008). However, use of the likelihood ratio test and CLR 

analysis significantly excluded a recessive model (p<0.0001) (Begovich et al. 2004); the data 

were consistent with both additive and dominant modes of inheritance. We emphasize this in 

light of our suggestion in Section I.A (Introduction) that all data sets be analyzed by a variety of 

methods and results compared. The difference in results in this case most likely arise from the 
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different models considered, a linked gene in LD with the marker in the AGFAP analysis, and a 

direct role of the marker in the CLR analysis. With this data, considering the P/C ratios and RPE 

analysis, we see consistency with the CLR results with the difference in the genotype risks (see 

Thomson et al. 2008: Table11.3, p<<0.0001). In analyses of genotype data and multiple sclerosis, 

Barcellos et al. (2006) showed that CLR modeling had more power to detect less common 

genotype effects compared with genoPDT (genotype PDT) analyses.  

 

Differential parental transmission expectations when a parent is affected 

For family based data ascertained for the presence of at least one affected parent and at least one 

or two affected offspring (MPC and MPS pedigrees, see Figures III.C.1b and d respectively), 

there are diagnostic differential transmission ratios from the affected and unaffected parents 

based on a recessive (symmetric) versus additive (asymmetric) model. The transmission 

expectations, as well as that of the non-transmitted allele from the affected parent are given in 

Table 1 of Thomson (1995a), and also the expected distributions for affected sib pair IBD 

distributions are given in Table 2. 

 

 

F. Affected sib pair identity by descent (IBD) values and mode of inheritance 

 

The distribution of the number of HLA haplotypes, or other marker variation, shared by affected 

sib pairs can also be used to obtain information on the mode of inheritance of the disease: 

recessive and additive as well as intermediate models (Thomson and Bodmer 1977a, b, Thomson 

1980, Louis et al. 1983, Motro and Thomson 1985, Payami et al. 1985, Thomson 1995a, b). (The 

test is carried out on marker genes close to, or which may include, the disease-predisposing 

gene.) For recessive and additive models (allowing for incomplete penetrance but not for 

sporadic cases of disease), the expected IBD values do not involve the disease penetrance values, 

and are functions only of the disease predisposing allele frequency, which for a two-disease allele 

model is denoted by pD. 

 For the recessive model, the share 2 (X), 1 (Y) and 0 (Z) parental alleles (haplotypes 

identical by descent (IBD) values in randomly ascertained affected sib pairs (MSP pedigrees) 

(Figure II.C.1c) are: 

 

 X = 1 / (1 + pD)
2
,   Y = pD / (1 + pD)

2
,   Z = pD

2
 / (1 + pD)

2
.   

 

For the additive model, they are: 

 

 X = (1 + pD) / [2(1 + 3pD),   Y = 1/2,   Z = pD / (1 + 3pD).   

 

In the limit, for very small disease allele frequencies, i.e., as pD tends to zero, for the recessive 

model the expectations tend to X = 1, Y = 0, Z = 0, while the expectations for the additive model 

are X = ½, Y = ½, Z = 0. Both recessive and additive expectations tend to X = ¼, Y= ½, Z = ¼ as 

pD tends to 1, as expected. 
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  Ironically, as above, given we now know the extent of heterogeneity of the HLA DR-DQ 

contribution to T1D, the results for T1D show incredibly close fit to a recessive model. Data and 

analyses from 538 families with 711 T1D affected sib pair comparisons show IBD share 2, 1, and 

0 values of 373, 283, and 55 compared to recessive expectations of 372.3, 284.4, and 54.3 

(Payami et al. 1985). The observed IBD frequencies of 52%, 40%, and 8% are very highly 

significantly different from random 25%, 50%, and 25% expectations (p< 10
-5

) and reject an 

additive model (p<<0.0001), a hallmark of which is the share 1 class has an expectation of 50%, 

and of course the share 2 class is greater in frequency than the share 0 class. 

 The expected IBD values for affected sib trios for the recessive and additive models have 

also been estimated, and applied to T1D HLA DR-DQ data (Payami et al. 1985). Again the data 

are compatible with recessive expectations and reject an additive model. The sib pair and sib trio 

data both give high estimates of the disease allele frequency under a recessive model (0.38 and 

0.34 respectively); given known monozygotic twin concordance rates, this indicates that the 

model of one HLA region gene with recessive inheritance is incompatible with the overall data. 

A model incorporating another (hypothetical) unlinked predisposing gene of risk magnitude 

around that of HLA was shown to be compatible with observed data (Thomson 1980). We of 

course now know that HLA contributes the major genetic contribution to T1D, with many other 

loci contributing much weaker effects to disease risk (Cooper at al. 2008). 

 The affected sib pair IBD sharing expectations for MPS pedigrees (families ascertained 

for the presence of at least two affected sibs and one affected parent) have been obtained for the 

recessive and additive expectations, as above for a marker gene linked to the actual predisposing 

disease gene (Thomson 1995a, c). In this case the share 1 (Y) values are subdivided based on 

whether the affected sibs share the allele transmitted by the affected parent (Y1), or the 

unaffected parent (Y2). For the recessive model:   

 

X = 1 / [2 (1 + pD)],  Y1 = pD / (1 + pD)
2
,  Y2 = pD / (1 + pD)

2
,  Z = pD

2
 / (1 + pD)

2
.   

 

For the additive model: 

 

X = [1 + 5pD + 2pD
2
] / [2 (1 + 9pD + 6pD

2
)],   Y1 = [1 + 3pD + 4pD

2
] / [2 (1 + 9pD + 6pD

2
)],   

 

Y2 = [2pD (3 + pD)] / [2 (1 + 9pD + 6pD
2
)],   Z = [4pD (1 + pD)] / [2 (1 + 9pD + 6pD

2
)].   

 

As for MSP pedigrees, the contrast between these expectations is large; in the limit as pD tends to 

zero, the recessive model expectations tend to X = 1/2, Y1 = 0, Y2 = 1/2, Z = 0, while the additive 

model expectations tend to X = 1/2, Y1 = 1/2, Y2 = 0, Z = 0. Both recessive and additive 

expectations converge on random expectations of X = ¼, Y1 = ¼ , Y2 = ¼, Z = ¼ as pD tends to 

1, as expected. The asymmetry in both recessive and additive expectations for the Y1 and Y2 

expectations provide a powerful additional contrast in analyses of the data.  
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G. The interrelationship of HLA associated diseases  

 

There is strong evidence for the interrelationship of disease risk with a number of HLA 

associated diseases: the same alleles or haplotypes are found strongly associated with differential 

risk for a number of diseases, e.g., DRB1*15:01 DQB1*06:02 is predisposing for multiple 

sclerosis and narcolepsy while it is very protective for T1D; DRB1*03:01 DQB1*02:01 is 

predisposing for T1D and celiac disease; DRB1*04:01 DQB1*03:02 is predisposing for T1D and 

rheumatoid arthritis. It is of particular interest to study the genetic interrelationship of these and 

other HLA associated diseases.     

 Payami et al. (1987) developed the appropriate affected sib pair IBD distributions for 

various combinations of two diseases, e.g., one sib has both diseases designated A and B, the 

other sib only has disease A, etc., for various combinations of the same genes contributing to 

disease risk, versus different genes contributing to each disease risk. Data with three diseases, 

T1D, rheumatoid arthritis, and autoimmune thyroid disease were analyzed and showed evidence 

for commonality of effects for T1D subsets (DR3 and DR4) separately with rheumatoid arthritis 

and autoimmune thyroid disease, and probably separate alleles contributing to rheumatoid 

arthritis and autoimmune thyroid disease. These results are logical given the known HLA disease 

associations. With high level resolution typing, and the fact that known high risk (predisposing 

and protective) HLA DR-DQ alleles and haplotypes are found in a number of diseases, it is time 

to reinvestigate this issue.  

 

 

 

IV. Secondary Disease Genes 

 

 A. Introduction 

 

With extensive SNP typing in a genetic region, the HLA region for example, before stratification 

analyses are performed, the number of markers with significant associations with disease may be 

quite large. While the strongest effects are expected to be seen around the primary disease gene, 

nevertheless very strong associations are seen at the many SNPs in high LD with the primary 

disease gene(s) for many HLA associated diseases (see for example Valdes et al. 2009, 2010). 

With application of stratification analyses, when the true primary disease gene has been 

identified, the number of markers showing significant associations is expected to decrease quite a 

bit, and further, the strength of these associations may be much weaker. This is demonstrated 

with class III markers and T1D in Valdes et al. (2009).  

 But as mentioned above, all marker loci should continue to be studied, as markers which 

do not show a significant association before stratification analyses, may nevertheless show 

significant associations with stratification analyses (see Thomson et al. 2008). Further, constant 

reassessment of primary disease genes must be made as further markers are studied and 

additional disease genes are identified. It may be that some SNPs are also identified as primary 

effects, either additional to the classical HLA genes, and possibly with stronger effects, or 

interaction effects, etc. 
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 As additional disease genes are identified, they are also subject to the same analyses as 

primary disease genes, again all heterogeneity in disease risk must be identified, including allele, 

haplotype, or genotype specific effects, and interaction effects (see Section III). Future 

stratification analyses must also take account of all known primary and additional disease gene 

effects. As mentioned above, cell sizes may become small. We may need to combine classes of 

homogenous effects, but again, these must be continually reassessed as additional disease genes 

are identified. Tests for modes of inheritance, maternal-fetal effects, and imprinting should also 

be carried out on all primary disease genes including additional disease gene effects as they are 

identified (see Thomson et al. 2008 for review). 

 The methods described below to detect additional disease genes are used to formally 

define primary disease genes. In effect, all stratification analyses should be applied in both 

directions. As illustration, for T1D, we would first condition on HLA DR-DQ haplotypes and 

genotypes and consider marker genes, e.g., an individual SNP, MSAT, or specific gene, or 

haplotype or genotype combinations thereof. For all significant effects, the data should also be 

analyzed vice versa, conditioning on this marker and studying the HLA DR-DQ variation. We 

repeat here, that we define primary disease genes as those that ―stand out‖ in initial association 

studies, and for the most part associations of other markers in the genetic region can be explained 

via their LD patterns with the primary disease gene(s). As our analyses progress, a number of 

genes or SNPs (not necessarily in the same gene) in a region may be included in the primary 

disease gene category. 

 Reports of other HLA region gene and MSAT associations with diseases have appeared in 

the literature. In many of these studies it has been difficult to determine if an additional HLA 

region gene is involved in disease, versus the associations reflecting LD with the antigen 

presenting HLA molecules directly involved in disease. However, a number of analytic strategies 

have been developed to remove the effects of LD with the antigen presenting HLA genes directly 

involved in the disease and these are described below.  

 Controlling for the influence of class II DR-DQ haplotype and genotype effects, a role in 

T1D has been shown of additional HLA class II (DPB1) (Noble et al. 2000, Valdes et al. 2001) 

and class I genes (including age of onset effects and rapid disease progression) (Fujisawa et al. 

1995, Nakanishi et al. 1995 , Noble et al. 2002, Steenkiste et al. 2007, Tait et al. 1995, Valdes et 

al. 1999, 2005a).  

 Also, various analyses have shown the presence of additional disease predisposing MSATs 

on specific high risk DR-DQ haplotypes and genotypes, that is, DR3, and DRB1*0401 and 

DRB1*0404 with DQB1*0302 (see e.g., Hanifi Moghaddam et al. 1998, Johansson et al. 2003, 

Lie et al. 1999a, 1999b, Pugliese et al. 2007, Steenkiste et al. 2007, Valdes et al. 2005c, Zavattari 

et al. 2001). Possible heterogeneity of the DR15 haplotype and T1D has been shown, with 

significant reduction in the diabetes-protective effect typically associated with this haplotype 

(Valdes et al. 2005b). The results from study of the effects of additional disease genes using 

different populations and even different samples from similar populations are very heterogenous 

and show weak effects, reminiscent of non-HLA gene effects. This is clearly demonstrated in 

analyses of the 13th International Histocompatibility Workshop T1D HLA data, a large 

worldwide collection typed for the classical HLA genes and eight msats in the HLA region 

(Pugliese et al. 2007 , Steenkiste et al. 2007). 

 Extensive SNP typing in the HLA region in combination with high resolution HLA typing 

in the T1DGC (Type 1 Diabetes Genetic Consortium) samples, has allowed more detailed 

analyses of the secondary roles of other classical HLA genes, as well as discovery of several 
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other secondary loci in the HLA region involved in T1D risk after conditioning for DRB1-DQB1 

(see e.g., Valdes et al. 2009, 2010). 

   

 B. Matched cases and controls 

 

A modification of the classic case/control design is to match cases and controls at the genotype 

level for the HLA class I or class II genes known to increase risk of disease, or other primary 

disease predisposing gene(s). This eliminates the effects of LD between the primary disease gene 

and other marker genes under study (Hanifi Moghaddam et al. 1998). Significant case/control 

differences in the distribution of marker allele, haplotype and genotype frequencies reflect the 

effect of additional disease susceptibility genes in the region. The major disadvantage of this 

matched approach is that it reduces the number of cases and controls available for analysis. An 

advantage is that effects can be summed over populations: the ratio of matched cases/controls 

must be the same in all data sets if they are to be combined. This approach is powerful if an 

effect is specific to or more easily detected in a specific subset of the data, either high risk or low 

risk. Note that the matched cases and controls approach is a specific case of the conditional 

genotype method (CGM) discussed below. This approach and the CGM can also be applied to 

family based data using, for example, matched genotypes from the proband (or average of 

affected sib pairs) and AFBACs (see Section II.C). 

 With matched cases and controls, the usual case, especially with T1D and its hierarchy of 

HLA DR-DQ disease effects, will be to restrict analyses to the genotypes common in patients. 

Hanifi-Moghaddam et al. (1998) analyzed data on T1D patients and controls matched for 

DR3/DRB1*0401 DQB1*0302, the most common high-risk genotype in Caucasians. Two HLA 

regions showed significant MSAT associations. Some analyses of the 13
th

 IHW disease data sets 

used matched cases and controls (Thomson et al. 2007b, Pugliese et al. 2007, Thorsby et al. 

2007, Steenkiste et al. 2007) and found evidence of additional disease predisposing loci for T1D 

and other diseases. Note however that the results are heterogenous between studies and 

replication of effects was difficult.  

 With diseases with a dominant predisposing effect, for example, narcolepsy and 

DQB1*0602, the decision must be made whether to match specifically on the non-DQB1*0602 

alleles in heterozygous individuals. As we have discussed above, it is essential to have performed 

an RPE analysis of allele, haplotype and genotype effects at the primary disease locus before 

proceeding in this way. With narcolepsy, additional DQB1 effects are seen as described above 

and must be taken into account, similarly with multiple sclerosis and DRB1. The difficulty with 

dominant protection, for example, T1D and DR15/DRX (X=non-DR15), is that the sample size 

in patients will be small, but nevertheless in samples where there are sufficient numbers in this 

category they should be investigated. Valdes et al. (2005b) have found preliminary evidence of a 

marker which modifies the protective effect of DR15 in a Swedish population. 

 Additional genetic effects may be specific to a high risk category. On the other hand, they 

may be restricted to, or be more easily detected in, a subgroup of cases and controls or families 

lacking the high risk factors at the primary disease gene(s). Removing multiple sclerosis trio 

families with DRB1*1501, and also DRB1*03 and DRB1*0103, from consideration, Yeo et al. 

(2007) found a protective effect for the allele C*05 of the HLA class I C locus. The effect could 

not be distinguished in the high risk DRB1*1501 set of families. 
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 C. Homozygous parent linkage and TDT tests 

 

Homozygous parent linkage test (HPLT) 

Using affected sib pair data, the role of genes additional to HLA DR-DQ in T1D was 

demonstrated by Robinson et al. (1993) using the homozygous parent linkage test (HPLT). 

Affected sib pairs (MSP pedigrees) with a parent homozygous for the DR3 haplotype were 

examined; a marker gene was used to distinguish between the DR3 haplotypes; in this case it was 

the highly polymorphic B locus, but it could be any combination of marker genes. Under the null 

hypothesis that no HLA region variation additional to that defined by DR3 is involved in T1D, 

the affected sib pairs should share the two parental DR3 haplotypes equally frequently. 

Significant deviation from 50% sharing was observed. Since DR3 haplotypes can for the most 

part be assumed to be homogenous for their DR-DQ alleles (DRB1*03:01 DQA1*05:01 

DQB1*02:01), this test implicated other HLA region genes in T1D on DR3 haplotypes. This 

result is consistent with more recent studies using matched case/control data (above), the 

homozygous parent TDT (HPTDT), and the conditional haplotype method (CHM) (see below). 

 How many parents can be expected to be homozygous for an allele (haplotype) at the 

primary disease predisposing gene? This is relevant not only to the current method, but also the 

HPTDT described below. For simplex (S) trio families, and approximately for multiplex affected 

sib pair (MSP) families, the expected number of homozygous parents is given by 2 (APi) (ACi), 

where APi is the observed frequency of the allele or haplotype (say DR3) in patients, and ACi is 

that in the AFBACs (determined from the results in Thomson 1995a, b). In the T1D affected sib 

pair families in Noble et al. (1996) shown in Table III.B.1, the DR3 haplotype had a frequency of 

0.319 in patients and 0.094 in controls; the observed number of homozygous DR3 parents was 21 

(0.058) (Table III.E.3), which agrees well with the estimated expected of 0.06. Obviously the 

more polymorphic the marker locus the greater the power of this method (more informative DR3 

parents); haplotypes of markers can be used to increase the power. If the sample size is sufficient, 

specific marker alleles and haplotypes can be studied to narrow down significant effects. The 

robustness of this approach is tempered by the fact that only a subset of all available data is used. 

Note that a significant effect with the HPLT does not mean a significant effect will be seen with 

the HPTDT (see below), and vice versa. As with the matched cases and controls approach, 

similarly with the HPTDT below, the robustness of this approach to across population analyses 

may be countered by the fact that only a limited subset of the data is used. 

 

Homozygous parent TDT (HPTDT) 

A modification of the TDT utilizing trio family data— S pedigrees (Figure II.C.1a) (affected sib 

pairs can also be used from MSP pedigrees)—with as above a parent homozygous for DR3 (the 

HPTDT), has also shown heterogeneity of DR3 haplotypes for T1D risk (Johansson et al. 2003 , 

Lie et al. 1999a, b). Families were examined to determine which haplotypes, defined by DR3 and 

an MSAT marker in this case, were transmitted (T) and not transmitted (NT) from the 

homozygous DR3 parent to the affected child. As above, families are informative only if they are 

heterozygous at the marker locus. 

 Issues of sample size are dramatically illustrated in application of the HPTDT to the 13th 

IHW data on T1D (Pugliese et al. 2007). Of the 307 families with a homozygous DR-DQ parent, 

179, 83, and 14, respectively, were homozygous for DR3, DRB1*0401 DQB1*0302, and 

DRB1*0404 DQB1*0302 (these are the three predisposing haplotypes shown in Table III.B.1and 
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common in Caucasian T1D patients). These numbers are exceedingly impressive and highlight 

the importance of collaboration and sharing. Nevertheless, to apply the HPTDT, the MSAT 

marker (of eight studied) had to be heterozygous in the homozygous DR parent. Further, because 

there are multiple MSAT alleles at each locus, the actual numbers in any one MSAT allele 

category is often small, even with the impressive sample size of the 13th IHW. (If one used 

biallelic SNPs, then many of the parents homozygous for the primary disease gene would not be 

heterozygous for the marker, hence haplotypes of multiple SNPs should be used.)  

 Parents homozygous for the three predisposing haplotypes listed above were analyzed 

both in individual populations and combined across populations (Pugliese et al. 2007, Steenkiste 

et al. 2007). The 13th IHW HPTDT results showed some significant effects but these were very 

heterogenous; different markers were significant in different populations, and the marker 

implicated in Lie et al. (1999a, b) was not replicated. However, as mentioned above, there is 

combined evidence from a number of studies for heterogeneity of DR3 haplotypes and T1D. 

 

 D. Conditional haplotype, genotype and logistic regression methods 

 

The conditional haplotype method (CHM) 

The logic of the CHM is as follows: if all HLA region genes directly involved in disease 

susceptibility have been identified, for example, HLA DR-DQ in T1D as the null, then the 

relative frequencies of alleles at polymorphic marker loci on high-risk haplotypes containing, for 

example, DR3 should be the same in cases and controls; similarly for other high risk haplotypes, 

as well as neutral, and protective haplotypes (in the latter case sample size in patients may be an 

issue). Denote the primary disease locus by A (or the primary plus secondary loci that have been 

identified), that is, all putative disease predisposing loci in the region, and alleles or haplotypes 

thereof by Ai, i = 1,2,.., kA, and a linked marker locus by B, with alleles Bk, k = 1,2,..,kB, then, 

under the null that the A locus defines all disease predisposition in the region:  

 

fpat(Ai-Bk) / f pat(Ai-Bl)  =  fcon(Ai-Bk) / fcon(Ai-Bl),  

            

where fpat(.) and fcon(.) represent patient and control frequencies. That is, although the 

frequencies of the haplotypes Ai-Bk and Ai-Bl will differ between patients and controls, the 

relative frequency of their ratios is expected to be the same in patients and controls, for each Ai. 

 Inequality of these relative frequencies in patients and controls is expected if the allele or 

SNP or haplotypes thereof under study does not include all genes involved in the disease process 

and in LD with the marker loci. While fit to these expectations does not exclude the possibility 

that other genes in the HLA complex are involved in disease, lack of fit unequivocally shows that 

all disease-predisposing genes in the region have not been identified (provided that stratification 

effects have not produced spurious results). With a CETDT analysis one similarly tests for 

heterogeneity of a specific haplotype using the TDT statistic (Koeleman et al. 2000a, b).  

 The CHM method initially showed heterogeneity of serologically defined DR3 haplotypes 

(Thomson et al. 1988) that has also been verified with a number of other methods of analysis as 

described above. The method was later applied, with development of an appropriate statistical 

test, to amino acid sites in the HLA DR-DQ genes to detect combinations of amino acids 
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involved in disease risk (Valdes and Thomson 1997, Valdes et al. 1997). As noted above, fit to 

the model does not imply that all amino acids have been identified, but lack of fit indicates that 

all genetic variation has not been accounted for. 

 

The overall conditional haplotype method (OCHM) 

Thomson (1984) developed a method to test for additional genetic effects over all haplotypes, 

henceforth referred to as the overall conditional haplotype method (OCHM). In that application 

of the test, haplotypes needed to be estimated. This test can be applied without resort to 

haplotype estimation; however the test statistic with both these approaches is not straightforward. 

One can also take the observed (obs) and expected (exp) fpat(BkBl) values from above and 

consider the observed and expected allele frequencies at the B locus under the null, obtained 

simply by the method of allele (gene) counting. This is in effect the same as the overall 

conditional haplotype method (OCHM) of Thomson (1984)  but obviates the need to estimate LD 

values in controls between the A and B genes. Note also, however, that it uses ratios of A locus 

genotype frequencies in patients versus controls rather than ratios of allele frequencies as in 

Thomson (1984), which may lead to a larger variance for the estimated values. Our results re 

statistical testing for OCGM data also apply; further work is required to determine the 

appropriate test statistic, again resampling is a solution. 

 One advantage of the CHM, OCHM, and CETDT, and the CGMs described below, is that 

more of the data is used than with the matched genotype approach and the HPTDT and HPLT 

methods. Results across studies cannot be directly combined, although combining of, for 

example, p values can be carried out (Fisher 1970). Care must be taken in all analyses and their 

interpretations with rare haplotypes and sparse cells. 

 

The conditional genotype method (CGM)  

Similar to the CHM, one can consider genotype frequencies (the CGM): if all disease-

predisposing genes in the region have been identified and represented by the locus A, then under 

this null hypothesis, the genotype frequencies at a linked marker locus B (not involved in disease 

nor in LD with additional genes involved in disease) are expected to satisfy the relationship:  

 

fpat(AiAj BkBl) / fpat(AiAj BmBn)  =  fcon(AiAj BkBl ) / fcon(AiAj BmBn).  

          

The genotypes at the B locus include all homozygotes and heterozygotes, and similarly all 

homozygotes and heterozygotes can be considered at the A locus (except for those that are too 

rare), although each is analyzed individually with the CGM (note again the equivalence with the 

matched case/control method (Section III.D)). 

 

The overall conditional genotype method (OCGM)  

If the effect of an additional disease predisposing gene in the region, for example, the B gene or 

one in LD with it, is not specific to a particular haplotype or genotype at the primary disease 

locus A, then more power should be available by considering B locus genotypes combined over 

all A locus genotypes - the overall conditional genotype method (OCGM). In this case, we use 
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the following expectation for each genotype combination in patients (Thomson and Valdes 

2007): 

 

exp fpat(AiAj BkBl)  =  [fcon(AiAj BkBl)] [fpat(AiAj) / fcon(AiAj)].  

 

For each B locus genotype, BkBl, we add over the A locus effects above, and expected patient 

values are compared to the observed. The question of statistical testing then arises. Application 

of a standard test of homogeneity of the B genotype observed (obs) and expected (exp) genotype 

numbers does not give a chi-square 
 
distribution, in fact the distribution is exponential. This is 

because of use of the ratio of the AiAj genotype frequencies in the estimation of expected values. 

Note also that the use of low frequency control genotype frequencies will be problematic 

notwithstanding; these genotypes can be left out of all studies. An appropriate test statistic has 

been developed (Thomson and Valdes 2007); a resampling approach is also an option. 

 

Conditional logistic regression (CLR) 

With CLR modeling, as described above, various aspects of the data can be analyzed: modes of 

inheritance of specific markers or proposed primary disease genes, dose and other heterogeneous 

effects of associated alleles, maximum likelihood estimates of relative penetrance values 

normalized to a reference genotype, and the effects of additional marker genes. Simmonds et al. 

(2005) using a stepwise logistic-regression analysis showed that the association of HLA DR-DQ 

with Graves disease could be explained with either DRB1 or DQA1 but not by DQB1. These 

data could also be analyzed using conditional haplotype and genotype methods (CHM, OCHM, 

CGM, and OCGM).  

 When a logistic regression, including CLR, is used to model the relationship between 

genetic factors and disease, as the distribution of data across numerous combinations of loci 

becomes sparse, the parameter estimates become unreasonably biased (for review see Thornton-

Wells et al. 2004). In other words, the analysis then suffers from the curse of dimensionality. In 

analyses considering a combination of loci, one or more of which have low minor allele 

frequencies, the number of individuals with certain multilocus genotype combinations will be so 

small (or perhaps equal to zero) that a reasonable estimate for that combination of genotypes 

cannot be derived. For HLA data on the classical loci this is particularly critical as most 

multilocus haplotypes are <5%. 

 In addition, it is quite possible that the effect of a secondary locus is due to its interaction 

with a major susceptibility locus and not to a ―main‖ effect.  For example, a SNP allele or 

genotype may only have a role on certain predisposing HLA haplotypes but not on all others.  In 

those situations some of the traditional implementations of logistic regression models (that is, 

forward stepwise regression) which require significant main effects to be modeled before 

including interaction effects between factors represent a major methodological limitation. In 

practice loci with relatively small main (non-interactive) effects but more substantial interactive 

effects would never be even included in the analyses. 

 This is not to deny the power and advantages of CLR analyses, for example to include 

covariates based on age of onset, sex, and population heterogeneity via principal components 

effects. The potential pitfalls are emphasized as there is more reliance on computer software 
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outputs with CLR than with previous analyses of HLA data using contingency table analyses, and 

careful inspection of the data by the analysts.  

 

 E. Combined association and IBD data 

 

If a primary gene has been identified, and no additional secondary genes are involved in disease 

in the genetic region under study, then all features of the data must be explained by the primary 

gene. If not, then additional secondary genes remain to be identified. 

 The marker associated segregation chi-square (MASC) method of Clerget-Darpoux et al. 

(1988, 1991) fits the most parsimonious model explaining the overall linkage and association 

observations and tests for fit to the data to test the hypothesis that a primary disease gene has 

been identified. The MASC method was extended (Dizier et al. 1994) to take account of the role 

of two unlinked candidate genes in T1D, in this case HLA and IDDM2. With molecular HLA 

data, fitting DR-DQ as the sole HLA susceptibility locus to T1D was strongly rejected (Valdes et 

al. 2001); addition of HLA DPB1 gave a better fit to the data. T1D probands were stratified into 

two groups: those not carrying the alleles DPB1*0301 and *0202 (which are associated with 

disease after accounting for the DR-DQ primary association) and those with at least one copy of 

either of these alleles. Interestingly, both groups have almost identical frequencies of DR-DQ 

haplotypes but significantly different IBD distributions in the subset of families with probands 

who do not carry the highly predisposing DR3/DR4 genotype. We stress again the necessity to 

understand all aspects of disease heterogeneity at the primary and additional disease loci in a 

region. 

 Rheumatoid arthritis is associated with HLA DRB1 alleles, and in particular the group of 

alleles associated with disease has in common closely related amino acids in the third 

hypervariable region of the DR molecule at positions 70-74: the ―shared epitope‖ (SE) 

hypothesis (Gregerson et al. 1987). Application of the MASC method to rheumatoid arthritis 

HLA ―shared epitope‖ data shows lack of fit of the linkage and association data (Genin et al. 

1998). However, if the heterogeneity in risk of the SE alleles due to variation at amino acid 

positions 70 and 71 is taken into account, then both the linkage and association data fit the model 

(du Montcel et al. 2005). This fit does not exclude the possibility that additional HLA region 

variation may modulate disease risk; a role of additional variation on HLA DR3 haplotypes has 

been shown with rheumatoid arthritis (Jawaheer et al. 2002, Nelson et al. 2007). 

 For PTPN22 data and rheumatoid arthritis, Bourgey et al. (2007) applied the MASC 

method and showed that the R620W variant (Begovich et al. 2004) alone could not explain the 

observed association and linkage data; the data were compatible with 3 SNPs studied or possibly 

via the role of two untyped SNPs. This does not exclude the role of additional variants in this 

region. Carlton et al. (2005) have demonstrated SNP associations additional to R620W. 

 With application of all methods described in this Section, including the MASC method, it 

is advantageous in terms of cell sizes to pool subsets of data when appropriate. However, we 

must always account for all known heterogeneity, and additionally be on the lookout for different 

aspects of the data which highlight heterogeneity, for example, the IBD distributions described 

above with DPB1 and T1D (Valdes et al. 2001). 
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V. Detecting Amino Acids at Classical HLA Genes Involved in Disease Risk 

 

 A. Introduction 

 

Peptide motifs important for binding to HLA molecules, including critical residues, have been 
defined by sequence analysis of naturally processed peptides eluted from HLA molecules, 
analysis with synthetic peptides, phage display libraries, and predictive inference of binding 
preference based on similarity of peptide-binding environments, see e.g., Leisner et al. (2008), 
Nielsen et al. (2004), and Frahm et al. (2008). Peptide motifs important for binding to HLA 
molecules, including critical residues, e.g., position 57 of DQB1, have been defined by sequence 
analysis of naturally processed peptides, analysis with synthetic peptides, and predictive 
inference of binding preference based on similarity of peptide-binding environments. 

 The variation in ability of different HLA alleles to present specific peptides is believed to 
be the basis of their associations with infectious and autoimmune diseases. The peptide epitopes 
of Epstein-Barr virus, human immunodeficiency virus, and other infectious agents have been 
elucidated in model systems, as have specific MHC alleles involved in their binding/presenting 
(reviewed in Karp et al. 2010). For most autoimmune diseases, while the HLA allelic and 
genotypic associations are well identified, the hypothesized antigenic peptides contributing to 
these associations are not known. However, if the amino acids directly involved in disease risk 
can be identified, predictions could be made about peptide epitopes, and this could lead to the 
design of novel vaccines and a better understanding of autoimmunity (Karp et al. 2010).   

 Using a variety of methods summarized below, specific amino acids and combinations 

thereof have been identified that are potentially directly involved in differential disease risk in a 

number of HLA associated diseases.  

 

 B. Within serogroup and sequence alignment comparisons 

 

Initial analyses usually rely on differential risk effects within serogroups of alleles, since alleles 

within the same serotype are more closely related at the AA level, hence significant differences in risk 
within serotypes, and between specific pairs of alleles within a serotype, may more easily identify 

specific amino acids, or a few amino acids, involved in disease. For example, study of T1D and 

DRB1*04:XX alleles on DQB1*03:02 haplotypes established heterogeneity in risk and a direct 

role of DRB1 in disease risk; also the initial observation of DQB1*03:02 versus *03:01 

differential risk effects on DRB1*04:01 haplotypes implicating a direct role of DQB1 and amino 

acid position 57 in disease risk; and similarly other informative comparisons of haplotypes with 

risk heterogeneity (see Thomson et al. 2007a for references and more details). Within serogroup 

analyses involve a more restricted set of amino acids compared to overall allele level 

comparisons. 

 With the JIA-OP data of Table III.C.1, pairwise comparisons within serotypes of alleles 

with sufficient sample size—DRB1*01:XX, *04:XX, *11:XX, and *13:XX—were performed 

using a chi-square heterogeneity test of the respective patient and control counts; this was 

followed by manual inspection of their respective sequences for comparisons where significant 

risk heterogeneity was detected (Thomson et al. 2010). Significant results (ordered by p-value) 
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identified specific amino acids or a set of amino acids required to explain the differential disease 

risk (Table V.B.1). 

 

Table V.B.1: Within serogroup differential risk comparisons of DRB1 alleles and JIA-OP 

 

 

Alleles compared
a
 p-value

b
 Amino Acids

c,d
 

   

*04:03 vs *04:01 + *04:04 0.002 74 

*11:04 vs *11:03 0.003 86 

*04:03 vs *04:01 0.004 71, 74, or 86 

*01:01 vs *01:03 0.02 67, 70, or 71 

*11:03 vs *11:01 0.04 71 or 86 

*13:01 vs *13:02 0.05 86 

a
  Within serogroup allele comparisons of data in Table III.C.1  

b
 Uncorrected p-value from the chi-square test of heterogeneity

 

c
 Amino acid residues that uniquely define these specific allele differences 

d  
Amino acids indicated in bold are those identified by other analyses as potentially 
playing a major or important role in disease risk for JIA-OP, those underlined as 
potentially having an effect, albeit weaker 

 

 

 

 

 The strong evidence for the role of amino acid 86 in differential disease risk is of 

particular interest, since with SFVT analysis (see below) this amino acid shows no significant 

effect. There is also sufficient evidence for a direct role of amino acid 74, which, in contrast to 

AA 86, individually shows a very significant effect with SFVT results (see Section V.D).  

 Identification of patterns from the sequence alignments of polymorphic sites at all alleles, 

again stratified by risk categories, has also been successfully applied, e.g., DRB1 and the so-

called ―shared epitope‖ set of amino acids 70-74 of DRB1 and rheumatoid arthritis. Recently 

autoimmunity to citrullinated protein antigens has been shown to define a clinically and 

genetically distinct subset of rheumatoid arthritis that is specifically associated with the ―shared 

epitope‖ alleles (reviewed in Imboden 2005). However, note that there is disease risk 

heterogeneity within the ―shared epitope‖ set of alleles. 

 

 C. The Unique Combinations Method 

 

In the original Unique Combinations algorithm (Salamon et al. 1996), two categories of amino 

acid sequences are defined by the user: those in the ―check‖ category are compared against those 

in the ―group‖ category in order to identify combinations of sites that are unique between these 

two groups of sequences. However, when there are two or more sequences in the check category, 

sites that are polymorphic between these check sequences are excluded from consideration. In 

Thomson et al. (2010) we extended the algorithm to allow inclusion of all sites that are 
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polymorphic in the check category, thus expanding the utility of the method. Also, this means 

that the group and check categories are now interchangeable, whereas before there was an 

asymmetry.   

 This extension of the Unique Combinations algorithm provides an ordered list of a 

minimal number of polymorphic positions, which as a haplotype can differentiate between the 

alleles in the ―check‖ and ―group‖ categories. Deriving the sets of amino acids that correspond to 

the resulting minimal unique combination generates unique sequences that either belong to the 

check category or the group category. Thus, if we compare HLA alleles divided into two 

mutually exclusive sets based on risk heterogeneity between the sets of alleles, amino acid 

variation identified as uniquely distinguishing the two sets are likely candidates as directly 

involved in disease risk. 

 For the JIA-OP data of Table III.C.1, using the subdivisions of common DRB1 alleles 

(and their extensions) into the three categories defined as sets A (column 2) and B (column 3)—I 

and Ix (predisposing), II and IIx (intermediate), and III and IIIx (protective) —we performed 

various Unique Combinations comparisons (Thomson et al. 2010). In Table V.C.1 below, we 

report the results of the comparisons of each risk category versus the other 2 risk categories, e.g., 

I versus II + III. The single, pair, and most commonly seen triple combinations of amino acids 

differentiating the sequences in the group and check categories are listed. Note that if an amino 

acid appears in a single combination, it will not appear in any pair or triple combinations, etc.  

 The DRB1 amino acids targeted from the Unique Combinations algorithm as important in 

JIA-OP risk are 86 (as in the pairwise allele within serotype analyses above) combined with 13 

and 37, or 13 and 67 (Thomson et al. 2010).  

 

  

Table V.C.1: JIA-OP HLA DRB1 Unique Combinations analyses 

 

 A1 A2 B1 B2 C1 C2 

group
a 

I Ix III IIIx II IIx 

check
a
 II+III IIx IIIx I+II Ix+IIx I+III Ix+IIIx 

       Amino Acids
b
 

   X    13 

    X   13, 67 

   X X   37, 67 

 X X   X  13, 37, 86 

 X X   X X 13, 67, 86 
 
a
 The sets of predisposing (I and Ix), intermediate (II and IIx), and protective (III and IIIx) alleles are defined in 

Table III.C.1, the group and check categories define the 2 groups of alleles being compared (the results are 
symmetric for the group and check categories)  

b
 Only amino acids in exon 2 are listed, other amino acids which appear in some comparisons are: 47, 57, 70, 71, 74 
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 D. Sequence Feature Variant Type (SFVT) analysis  

 

Sequence Feature Variant Type (SFVT) analysis was developed to systematically perform 

association tests focusing on variation at biologically relevant SFs, which are based on structural 

(e.g., beta-strand 1) and functional (e.g., peptide binding site) features of the protein (Karp et al. 

2010). The SFs include classical HLA allele level and single amino acid polymorphisms. With 

systemic sclerosis, specific amino acids in pockets 4 and 7 of the peptide binding site are shown 

to explain much of the molecular determinant of disease risk (Karp et al. 2010).  

 Thomson et al. (2010) applied SFVT analysis (Tables V.D.1A and 1B) to the JIA-OP data 

of Table III.C.1; specific amino acids in pockets of the peptide binding site are shown to account 

for the major disease risk. After initial SFVT analysis (Table V.D.1A), so-called temporary SFs 

(tSFs) (Table V.D.1B) are defined by combinations of potentially informative amino acids.  

   

Table V.D.1: SFVT results 
 

A. JIA-OP HLA DRB1 SFVT analysis with SFs ranked by overall p-values 
 

Rank
 

SF # Description
a
 amino acid

b
 p-value max OR min OR 

       

1 57 position 13 13 1.8E-28 4.91 0.33 

2 136 pocket 6 11, 13, 30    3.9E-28 7.07 0.31 

3 134 pocket 4 13, 26, 28, 70, 71, 74, 78 5.7E-28 6.84 0.28 

4 151 beta1_pep ant-TCR 11, 13 9.4E-28 4.89 0.33 

5 1 allele
c
  1.1E-27 9.40 0.28 

6 137 pocket 7 28, 30, 47, 61, 67, 71     8.9E-27 9.40 0.28 

7 142 pep ant position 12 9, 56, 57, 60, 61, 67 4.2E-26 7.14 0.31 

8 55 position 11 11 8.8E-25 3.15 0.33 

9 130 pep ant & TCR 60, 67, 70, 71, 77, 78, 85 7.0E-24 9.40 0.32 

10 56 position 12 12 1.1E-22 3.15 0.32 

11 54 position 10 10 1.9E-22 3.14 0.32 

12 162 alpha2_pocket 7 67, 71 2.9E-21 9.40 0.33 

13 19 alpha-helix 1 52..62 3.5E-18 3.92 0.44 

14 98 position 67 67 3.0E-17 3.39 0.54 

15 138 pocket 9 9, 37, 57 3.6E-16 3.92 0.33 

16 104 position 74 74 3.8E-16 6.84 0.33 

17 74 position 37 37 3.7E-13 1.80 0.34 

18 59 position 16 16 5.4E-13 4.91 0.20 

19 90 position 57 57 5.5E-13 3.92 0.44 

20 53 position 9 9 2.3E-11 2.30 0.42 

21 135 pocket 5 70, 71 1.4E-10 1.79 0.33 

22 102 position 71 71 1.2E-09 1.48 0.33 

23 101 position 70 70 4.5E-09 2.03 0.54 

24 71 position 33 33 3.1E-07 2.62 0.38 

25 58 position 14 14 3.6E-07 3.05 0.33 

26 63 position 25 25 3.6E-07 3.05 0.33 

27 91 position 58 58 1.0E-06 2.35 0.43 
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28 24 position 78 78 3.3E-06 2.56 0.39 

29 93 position 60 60 3.5E-06 2.36 0.44 

30 68 position 30 30 2.3E-05 1.55 0.33 

31 152 beta2_pocket 7 28, 30 4.3E-05 1.55 0.33 

32 155 beta2_pocket 4 26, 28 4.4E-05 1.31 0.34 

33 141 pep ant position 4 77, 78, 81, 82, 85 7.4E-05 1.37 0.39 

34 153 beta2_pep ant bind 26, 28, 30 0.0001 1.32 0.33 

35 13 beta-strand 2 23..32 0.0002 1.29 0.33 

36 66 position 28 28 0.004 1.54 0.63 

37 22 position 73 73 0.007 1.47 0.68 

38 81 position 47 47 0.03 1.28 0.78 

39 178 beta1_CD4 bind 41..56 0.03 1.28 0.78 

40 70 position 32 32 0.07 1.25 0.80 

41 154 beta2_alpha chain 29, 31, 32 0.13 1.27 0.80 

42 110 position 86 86 0.34 1.12 0.90 

43 106 position 77 77 0.41 1.16 0.86 

44 132 pocket 1 82, 85, 86, (89, 90) 0.58 1.14 0.89 

45 173 alpha4_pocket1 82, 85, 86  0.63 1.13 0.90 

46 64 position 26 26 0.67 1.16 0.93 

47 109 position 85 85 0.74 1.13 0.88 

48 69 position 31 31 0.86 1.03 0.97 

49 75 position 38 38 0.91 1.04 0.96 
 

a
 These are abbreviated descriptions, see Karp et al (2010) for the full definition of each SF 

b
 Amino acids indicated in bold are those identified as having a major or important role in disease risk, those 

underlined as potentially having an effect, albeit weaker, and for those in italics their effect may be explained by 

LD with AA 13.   
b
 SF127 (peptide antigen binding site - PBS) amino acids: 9, 11, 13, 26, 28, 30, 37, 47, 56, 57, 60, 61, 67, 70, 71, 74, 

77, 78, 81, 82, 85, 86, 89, 90, has identical VT counts as SF1 (allele) 
  

 

B. JIA-OP HLA DRB1 SFVT analysis of tSFs ranked by overall p-values 

 

rank SF # Description amino acid p-value 

max 

OR min OR 

1 t201  13, 37 5.6E-30 7.04 0.37 

2 t205  13, 37, 74, 86 2.7E-29 6.69 0.37 

3 t206  13, 67, 74, 86 1.2E-28 6.47 0.28 

4 t224  13, 37, 67 1.3E-28 6.84 0.28 

5 57 position 13 13 1.8E-28 4.91 0.33 

6 t203  13, 67 2.3E-28 6.84 0.28 

7 t225  37, 67 2.2E-28 3.90 0.31 

8 t204  13, 67, 86 2.5E-28 6.69 0.28 

9 t218  13, 37, 57, 67, 74, 86 3.6E-28 6.90 0.28 

10 t207  13, 37, 67, 74, 86 3.3E-28 6.47 0.28 

11 t215  13, 57, 67, 71, 74, 86 1.1E-27 9.40 0.28 

12 1 allele  1.1E-27 9.40 0.28 
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 E. Conditional haplotype analyses of HLA amino acid data  

 

Many amino acids at DRB1 for JIA-OP, and DRB1 and DQB1 for T1D, show significant 

associations with disease, and continue to do so even with conditional analyses, as they are in LD 

with additional amino acids directly involved in differential disease risk. Additional work 

remains to take account of the complex LD pattern of amino acids at the classical HLA loci (see 

Figure V.E.1 below for DRB1 amino acid LD data, and Single et al. 2011 for DQB1 amino acid 

LD data). Note further, that when the LD is very high it may be impossible to distinguish 

between highly correlated amino acid sites; studies in other ethnic groups where the LD pattern 

may be different are then useful. 

 

Figure V.E.1: JIA -OP HLA DRB1 amino acid LD
a 

. 

 
a
Linkage Disequilibrium Measure Plot: Wn (All populations, DRB1) (Lancaster 2006) 

 

 As mentioned above, the application of a series of complementary methods (see Figure 

V.E.2 and Figure 1 of Thomson et al. 2010)—within serogroup comparisons (Section V.B), the 

Unique Combinations method (Section V.C), SFVT analyses (Section V.D), and Conditional 

Haplotype method (CHM) analyses —provides a powerful and systematic approach to the 

detection of the biologically relevant amino acids contributing to disease risk. For JIA-OP the 
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amino acids identified are (in numeric order): AAs 13 (pockets 4 and 6), 37 and 57 (both pocket 

9), 67 (pocket 7), 74 (pocket 4), and 86 (pocket 1), and to a lesser extent 30 (pockets 6 and 7) and 

71 (pockets 4, 5, and 7). In some cases we cannot exclude the involvement of other amino acids 

in high LD with these. 

 

 

Figure V.E.2: Methods to apply to detect HLA amino acids directly involved in disease risk
a
 

 

 
a
See Thomson et al. (2010) 

 

 Application of different methods can help validate evidence of a direct role of specific 

amino acids and identify amino acids additional to those identified by for example SFVT 

analysis, particularly when there are interaction effects, e.g., DRB1 amino acid position 86 (Karp 

et al. 2010, Thomson et al. 2010, and unpublished data). However, the combinational magnitude 

of considering many combinations of amino acids, and CHM analyses thereof, is computationally 

intensive, and even when feasible, the interpretation of results is difficult. Also, for HLA data 

one quickly runs out of variation to test since HLA allelic variation can be uniquely defined by a 

limited number of amino acid sites (see Thomson et al. 2010, and Table V.E.1 below). 
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Table V.E.1: JIA -OP HLA DRB1 amino acid variation 

 

  aa position a 
13 67 74 86 37 57 30 71 

JIA-OP Controls # alleles 6 3 4 2 5 5 5 4 

12 1 DRB1*1103 S F A V Y D Y E 

102 13 DRB1*0801 G F L G Y S Y R 

57 11 DRB1*1104 S F A V Y D Y R 

9 3 DRB1*0403 H L E V Y D Y R 

90 38 DRB1*1301 S I A V N D Y E 

9 5 DRB1*0102 F L A V S D C R 

60 36 DRB1*1101 S F A G Y D Y R 

9 6 DRB1*0901 F F E G N V G R 

74 50 DRB1*0101 F L A G S D C R 

89 61 DRB1*0301 S L R V N D Y K 

10 8 DRB1*1201 G I A V L V H R 

28 23 DRB1*1302 S I A G N D Y E 

10 9 DRB1*1303 S I A G Y S Y K 

6 8 DRB1*1601 R F A G S D Y R 

11 18 DRB1*1401 S L E V F A Y R 

5 10 DRB1*1502 R I A G S D Y A 

7 16 DRB1*0404 H L A V Y D Y R 

38 80 DRB1*1501 R I A V S D Y A 

30 65 DRB1*0701 Y I Q G F V L R 

21 47 DRB1*0401 H L A G Y D Y K 

4 11 DRB1*0103 F I A G S D C E 

 

 

 Preliminary CHM analyses have been applied to the JIA-OP HLA DRB1 amino acid data 

(Thomson et al. 2010) and to T1D data (unpublished). For JIA-OP pairwise conditional analyses 

of amino acids 13 and 67 show evidence of a direct role in disease risk (or high LD with other 

amino acids with a direct role in disease) (see Figure V.E.3). Note also the high blocks of LD of 

amino acids 10-13 in Figure V.E.1, and the strong associations of all these with JIA-OP. Amino 

acid 13 is more polymorphic than the others, so CHM analysis can be applied and indicates a 

direct role of amino acid 13 over the others. More work is required on how to systematically 

apply CHM analyses to the HLA amino acid data, and interpret the results. 
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Figure V.E.3: Conditional haplotype method analysis of JIA -OP HLA DRB1 amino acids 

13 and 67 variation 

 

 

 

DRB1 Amino Acids 13 and 67 
 

 
 13 - 67  patients controls OR 
  G  -  F 108   14  6.8 
  S  -  F  130   49  2.3 
  S  -  I  131   71  1.5 
  G  -  I  13     8  1.3 
  S  -  L 102   80  1.0 
  R  -  I  44   91  0.2 
  others 270  233 
  Sum 798  546 

p < 0.002 
AA 67 involved 
or an AA in LD 

p < 8E-9 
AA 13 involved 
or an AA in LD 

overall p < 2E-28 

p < 0.001 
AA 67 involved 
or an AA in LD 
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Appendix A: Relative Predispositional Effects (RPE) Method Applied to Juvenile 

 Idiopathic Arthritis (JIA) Oligoarticular Persistent (OP) Data 

 

 

The data are HLA DRB1 high resolution (4 digit amino acid level) data on 354 JIA patients with 

the clinical phenotype oligoarticular persistent (OP) and 273 controls (Hollenbach et al. 2010, 

Thomson et al. 2010). The alleles are ranked by their ORs (from most predisposing to most 

protective). The first analysis, detailed in this Appendix, is the RPE method of Payami et al. 

(1989) using a chi-square test of heterogeneity with uncorrected p-values. All alleles with an 

expected < 5 in patients or controls are placed in the ‗binned‘ category (Table II.H.1). The binned 

category is then removed from analysis (keeping the binned category in the analyses does not 

alter the results, and whether or not to remove the binned category is at the discretion of the 

analyst). Alleles with the strongest effects (measured by their contribution to the overall chi-

square value) are then sequentially removed from the analysis. Note that the individual allele p-

values are biased (conservative with respect to finding significant effects), as the assumption of a 

chi-square with 1 degree of freedom (df) is incorrect; the p-values can be used however for a 

relative ranking of the allelic effects. 

 The overall analysis of the complete data set shows considerable heterogeneity in risk 

(Chi-sq = 182.1, df = 21, p < 1.1E-27) (Table A.1). Removal of the binned category gives a very 

similar result (Chi-sq = 181.5, df = 20, p < 5.0E-28) (Table A.2), and in both cases DRB1*0801 

(predisposing) and DRB1*1501 and DRB1*0701 (protective) are the strongest effects (these 

alleles are denoted as belonging to Category 1 in the RPE analysis, and see Column 1 of Table 

II.H.1). Removal of these alleles gives a highly significant result for risk heterogeneity of the 

remaining alleles (Chi-sq = 79.9, df = 18, p < 4.1E-10) (Table A.3), with DRB1*1104 

(predisposing) and DRB1*0401 (protective) as the strongest effects (Category 2). Note that a 

strong argument could be made for deleting these alleles also at the previous round, but it does 

not alter the outcome. With removal of these strong effects, there is only minimal evidence of 

remaining risk heterogeneity (Chi-sq = 25.2, df = 13, p < 0.02) (Table A.4), with the strongest 

effects due to DRB1*1103 (p < 0.01) (predisposing) and DRB1*0103 (p < 0.02) (protective) 

(Category 3). Note that these latter p-values would not be significant with corrections for 

multiple comparisons of either the overall tests, or those for individual alleles. Notwithstanding, 

our principal aim is to detect heterogeneity that may be relevant to detecting additional disease 

genes in a genetic region, hence one wants to err on the side of not missing potential 

heterogeneity, and these observations should be studied with replication data sets. The results 

from RPE analysis are all compatible with heterogeneity testing of all pairwise allele 

comparisons (Appendix B below), and consideration of ORs and P/C ratios (which are similar in 

these cases). 

  

Table A.1: Heterogeneity test of HLA DRB1 alleles and JIA-OP including the binned class 

 

DRB1 Patients controls Total Exp P Exp C Chi sq P-value df 

1103-  12 1 13 7.3397 5.6603 6.80 0.009136 21 

0801-  102 13 115 64.928 50.072 48.61 3.12E-12 Ov'l Chi Sq 

1104-       57 11 68 38.392 29.608 20.71 5.34E-06 182.1 

0403-  9 3 12 6.7751 5.2249 1.68 0.195186 P-value 

1301-         90 38 128 72.268 55.732 9.99 0.001572 1.1E-27 
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0102-       9 5 14 7.9043 6.0957 0.35 0.554774  

1101-    60 36 96 54.201 41.799 1.42 0.232585  

0901-  9 6 15 8.4689 6.5311 0.08 0.782105  

0101-  74 50 124 70.01 53.99 0.52 0.469828  

0301- 89 61 150 84.689 65.311 0.50 0.477746  

1201- 10 8 18 10.163 7.8373 0.01 0.938356  

1302-     28 23 51 28.794 22.206 0.05 0.822511  

1303- 10 9 19 10.727 8.2727 0.11 0.736482  

binned 27 27 54 30.488 23.512 0.92 0.338393  

1601- 6 8 14 7.9043 6.0957 1.05 0.304658  

1401-   11 18 29 16.373 12.627 4.05 0.044175  

1502-  5 10 15 8.4689 6.5311 3.26 0.070845  

1501-   38 80 118 66.622 51.378 28.24 1.07E-07  

0701-  30 65 95 53.636 41.364 23.92 1E-06  

0401-         21 47 68 38.392 29.608 18.10 2.1E-05  

0404- 7 16 23 12.986 10.014 6.34 0.011826  

0103-       4 11 15 8.4689 6.5311 5.42 0.019953  

total 708 546 1254 708 546 0.00 1  

 

 

Table A.2: Binned category removed 

 

DRB1 Patients controls Total Exp P Exp C Chi sq P-value df 

1103-  12 1 13 7.3775 5.6225 6.70 0.009659 20 

0801-  102 13 115 65.263 49.738 47.82 4.68E-12 Ov'l Chi Sq 

1104-       57 11 68 38.59 29.41 20.31 6.6E-06 181.5 

0403-  9 3 12 6.81 5.19 1.63 0.201928 P-value 

1301-         90 38 128 72.64 55.36 9.59 0.001954 5.0E-28 

0102-       9 5 14 7.945 6.055 0.32 0.569267  

1101-    60 36 96 54.48 41.52 1.29 0.255465  

0901-  9 6 15 8.5125 6.4875 0.06 0.799442  

0101-  74 50 124 70.37 53.63 0.43 0.510544  

0301- 89 61 150 85.125 64.875 0.41 0.523063  

1201- 10 8 18 10.215 7.785 0.01 0.918528  

1302-     28 23 51 28.943 22.058 0.07 0.789938  

1303- 10 9 19 10.783 8.2175 0.13 0.717088  

1601- 6 8 14 7.945 6.055 1.10 0.294063  

1401-   11 18 29 16.458 12.543 4.18 0.040797  

1502-  5 10 15 8.5125 6.4875 3.35 0.067159  

1501-   38 80 118 66.965 51.035 28.97 7.36E-08  

0701-  30 65 95 53.913 41.088 24.52 7.34E-07  

0401-         21 47 68 38.59 29.41 18.54 1.67E-05  

0404- 7 16 23 13.053 9.9475 6.49 0.010853  

0103-       4 11 15 8.5125 6.4875 5.53 0.018684  

total 681 519 1200 681 519 0.00 1  
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Category 1: DRB1*0801 – the strongest predisposing effect is removed, and DRB1*1501 and 

DRB1*0701 - the two strongest protective effects, are removed for the next round of analysis  

 

 

Table A.3: DRB1*0801, DRB1*1501, and DRB1*0701 (Category 1) removed 

 

DRB1 Patients Controls Total Exp P Exp C Chi sq P-value df 

1103-  12 1 13 7.6181 5.3819 6.09 0.013609 18 

1104-       57 11 68 39.849 28.151 17.83 2.41E-05 Ov'l Chi Sq 

0403-  9 3 12 7.0321 4.9679 1.33 0.248765 79.9 

1301-         90 38 128 75.009 52.991 7.24 0.007142 P-value 

0102-       9 5 14 8.2041 5.7959 0.19 0.665852 4.1E-10 

1101-    60 36 96 56.257 39.743 0.60 0.437972  

0901-  9 6 15 8.7901 6.2099 0.01 0.9124  

0101-  74 50 124 72.665 51.335 0.06 0.807714  

0301- 89 61 150 87.901 62.099 0.03 0.855489  

1201- 10 8 18 10.548 7.4518 0.07 0.793077  

1302-     28 23 51 29.886 21.114 0.29 0.591744  

1303- 10 9 19 11.134 7.8658 0.28 0.597312  

1601- 6 8 14 8.2041 5.7959 1.43 0.231703  

1401-   11 18 29 16.994 12.006 5.11 0.023827  

1502-  5 10 15 8.7901 6.2099 3.95 0.046941  

0401-         21 47 68 39.849 28.151 21.54 3.47E-06  

0404- 7 16 23 13.478 9.5218 7.52 0.006098  

0103-       4 11 15 8.7901 6.2099 6.31 0.012037  

total 511 361 872 511 361 0.00 1  

 

Category 2: DRB1*1104 – the next strongest predisposing effect is removed, and DRB1*0401 - 

the next strongest protective effect, are removed for the next round of analysis  

 

Table A.4: Category 1 alleles and DRB1*1104 and DRB1*0401 (Category 2) removed 

 

DRB1 Patients controls Total Exp P Exp C Chi sq P-value df 

1103-  12 1 13 7.4667 5.5333 6.47 0.010993 13 

0403-  9 3 12 6.8923 5.1077 1.51 0.218487 
Ov'l Chi 
Sq 

0102-       9 5 14 8.041 5.959 0.27 0.604209 25.2 

1101-    60 36 96 55.138 40.862 1.01 0.315612 P-value 

0901-  9 6 15 8.6154 6.3846 0.04 0.840817 0.02 

0101-  74 50 124 71.221 52.779 0.25 0.613682  

0301- 89 61 150 86.154 63.846 0.22 0.638354  

1201- 10 8 18 10.338 7.6615 0.03 0.87182  

1302-     28 23 51 29.292 21.708 0.13 0.714374  

1303- 10 9 19 10.913 8.0872 0.18 0.671901  

1601- 6 8 14 8.041 5.959 1.22 0.269922  
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1401-   11 18 29 16.656 12.344 4.51 0.03364  

1502-  5 10 15 8.6154 6.3846 3.56 0.05903  

0103-       4 11 15 8.6154 6.3846 5.81 0.015945  

total 336 249 585 336 249 0.00 1  

 

Category 3: weak evidence for heterogeneity of effects for DRB1*1103 predisposing, and 

DRB1*0103 protective effect, no further rounds of analyses are performed, although note that 

these are very rare alleles and significant effects may be detected in a larger sample 

 

 

 

 

 

Appendix B: Pairwise Risk Comparisons Applied to Juvenile Idiopathic Arthritis (JIA) 

Oligoarticular Persistent (OP) Data 

 

The data are as in Appendix A. The alleles are ranked by their ORs (from most predisposing to 

most protective) (see Table II.H.1). The Tables given below list the uncorrected p-values for a 

chi-square test of heterogeneity of each pairwise combination listed. The diagonals are shaded 

grey, and the values are symmetric around the diagonal.  

 The p-values for the pairwise tests for alleles that are relatively common in patients or 

controls are given in Table B.1 below (this is identical to Table II.H.2 in the text, and is repeated 

for ease of comparison with the other Tables in this Appendix). These show a pattern of nearly 

mutually exclusive blocks of predisposing (shaded teal), neutral (intermediate) (shaded light 

grey), and protective (shaded pink) alleles (these are referred to as categories I, II, and III in 

column 2 of Table II.H.1 in the text).  

 

 

Table B.1: Pairwise allele risk heterogeneity comparison p-values for common HLA DRB1 

alleles and JIA-OP 

 

Reduced data set A - categories I, II, and III        

            

DRB1 *0801 *1104 *1301 *1101 *0101 *0301 *1302 *0404 *1501 *0701 *0401 

*0801  0.3454 0.0004 7E-06 4E-07 1E-07 1E-06 4E-10 1E-18 2E-17 8E-16 

*1104 0.3454  0.0376 0.0029 0.0006 0.0004 0.0005 1E-06 1E-11 4E-11 4E-10 

*1301 0.0004 0.0376  0.2186 0.0766 0.0567 0.0496 0.0002 2E-09 1E-08 1E-07 

*1101 7E-06 0.0029 0.2186  0.6705 0.6201 0.371 0.0054 1E-05 2E-05 7E-05 

*0101 4E-07 0.0006 0.0766 0.6705  0.9539 0.5604 0.0096 2E-05 4E-05 0.0001 

*0301 1E-07 0.0004 0.0567 0.6201 0.9539  0.5794 0.0094 1E-05 2E-05 1E-04 

*1302 1E-06 0.0005 0.0496 0.371 0.5604 0.5794  0.051 0.0055 0.006 0.0084 

*0404 4E-10 1E-06 0.0002 0.0054 0.0096 0.0094 0.051  0.8678 0.9155 0.9679 

*1501 1E-18 1E-11 2E-09 1E-05 2E-05 1E-05 0.0055 0.8678  0.9226 0.8521 

*0701 2E-17 4E-11 1E-08 2E-05 4E-05 2E-05 0.006 0.9155 0.9226  0.9246 

*0401 8E-16 4E-10 1E-07 7E-05 0.0001 1E-04 0.0084 0.9679 0.8521 0.9246  
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 Table B.2 below extends the alleles considered, such that rarer alleles within the bounds 

of the three categories I, II and III above are now included.  The pattern now deviates more from 

the block like patterns of significance expected based on their ORs, and this reflects in the main 

the fact that the additional alleles are much rarer. Nonetheless their categorization into the three 

risk categories is substantiated by much of the data (these are referred to as categories Ix, IIx, and 

IIIx, see Table II.H.1 of the text).  

 

Table B.2: Pairwise allele risk heterogeneity comparison p-values for an extended set of 

DRB1 alleles 

 

Reduced data set B - categories Ix, IIx, and IIIx        

            

DRB1 *1103 *0801 *1104 *1301 *0102 *1101 *0901 *0101 *0301 *1201 *1302 

*1103  0.6925 0.4301 0.0912 0.0801 0.0332 0.049 0.0206 0.0188 0.0261 0.0129 

*0801 0.6925  0.3454 0.0004 0.0128 7E-06 0.0031 4E-07 1E-07 0.0003 1E-06 

*1104 0.4301 0.3454  0.0376 0.093 0.0029 0.0385 0.0006 0.0004 0.0102 0.0005 

*1301 0.0912 0.0004 0.0376  0.6412 0.2186 0.4129 0.0766 0.0567 0.207 0.0496 

*0102 0.0801 0.0128 0.093 0.6412  0.8973 0.8121 0.7385 0.7178 0.6179 0.53 

*1101 0.0332 7E-06 0.0029 0.2186 0.8973  0.8527 0.6705 0.6201 0.5786 0.371 

*0901 0.049 0.0031 0.0385 0.4129 0.8121 0.8527  0.9808 0.96 0.797 0.7266 

*0101 0.0206 4E-07 0.0006 0.0766 0.7385 0.6705 0.9808  0.9539 0.7395 0.5604 

*0301 0.0188 1E-07 0.0004 0.0567 0.7178 0.6201 0.96 0.9539  0.7582 0.5794 

*1201 0.0261 0.0003 0.0102 0.207 0.6179 0.5786 0.797 0.7395 0.7582  0.9618 

*1302 0.0129 1E-06 0.0005 0.0496 0.53 0.371 0.7266 0.5604 0.5794 0.9618  

*0404 0.0004 4E-10 1E-06 0.0002 0.0438 0.0054 0.0712 0.0096 0.0094 0.1052 0.051 

*1501 2E-05 1E-18 1E-11 2E-09 0.0178 1E-05 0.0339 2E-05 1E-05 0.0535 0.0055 

*0701 3E-05 2E-17 4E-11 1E-08 0.0172 2E-05 0.0325 4E-05 2E-05 0.0511 0.006 

*0401 4E-05 8E-16 4E-10 1E-07 0.0181 7E-05 0.0336 0.0001 1E-04 0.0525 0.0084 

 

 

DRB1 *0404 *1501 *0701 *0401 

*1103 0.0004 2E-05 3E-05 4E-05 

*0801 4E-10 1E-18 2E-17 8E-16 

*1104 1E-06 1E-11 4E-11 4E-10 

*1301 0.0002 2E-09 1E-08 1E-07 

*0102 0.0438 0.0178 0.0172 0.0181 

*1101 0.0054 1E-05 2E-05 7E-05 

*0901 0.0712 0.0339 0.0325 0.0336 

*0101 0.0096 2E-05 4E-05 0.0001 

*0301 0.0094 1E-05 2E-05 1E-04 

*1201 0.1052 0.0535 0.0511 0.0525 

*1302 0.051 0.0055 0.006 0.0084 

*0404  0.8678 0.9155 0.9679 

*1501 0.8678  0.9226 0.8521 

*0701 0.9155 0.9226  0.9246 

*0401 0.9679 0.8521 0.9246  
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 Table B.3 below considers all alleles, including the binned category. Rare alleles which 

cannot be placed into one of the three risk categories are shaded in green.  

 

Table B.3: Pairwise allele risk heterogeneity comparison p-values for all DRB1 alleles 

 

 

Full data set           

            

DRB1 *1103 *0801 *1104 *0403 *1301 *0102 *1101 *0901 *0101 *0301 *1201 

*1103  0.6925 0.4301 0.2383 0.0912 0.0801 0.0332 0.049 0.0206 0.0188 0.0261 

*0801 0.6925  0.3454 0.1737 0.0004 0.0128 7E-06 0.0031 4E-07 1E-07 0.0003 

*1104 0.4301 0.3454  0.4583 0.0376 0.093 0.0029 0.0385 0.0006 0.0004 0.0102 

*0403 0.2383 0.1737 0.4583  0.733 0.5551 0.3954 0.4113 0.2987 0.2854 0.2789 

*1301 0.0912 0.0004 0.0376 0.733  0.6412 0.2186 0.4129 0.0766 0.0567 0.207 

*0102 0.0801 0.0128 0.093 0.5551 0.6412  0.8973 0.8121 0.7385 0.7178 0.6179 

*1101 0.0332 7E-06 0.0029 0.3954 0.2186 0.8973  0.8527 0.6705 0.6201 0.5786 

*0901 0.049 0.0031 0.0385 0.4113 0.4129 0.8121 0.8527  0.9808 0.96 0.797 

*0101 0.0206 4E-07 0.0006 0.2987 0.0766 0.7385 0.6705 0.9808  0.9539 0.7395 

*0301 0.0188 1E-07 0.0004 0.2854 0.0567 0.7178 0.6201 0.96 0.9539  0.7582 

*1201 0.0261 0.0003 0.0102 0.2789 0.207 0.6179 0.5786 0.797 0.7395 0.7582  

*1302 0.0129 1E-06 0.0005 0.2032 0.0496 0.53 0.371 0.7266 0.5604 0.5794 0.9618 

*1303 0.0174 8E-05 0.0043 0.213 0.1231 0.5032 0.4207 0.6675 0.5613 0.5764 0.8584 

binned 0.0055 3E-08 6E-05 0.1157 0.009 0.3399 0.1365 0.4928 0.2309 0.235 0.683 

*1601 0.0065 1E-05 0.0009 0.0982 0.0371 0.2556 0.1611 0.3559 0.2268 0.2324 0.476 

*1401 0.0011 3E-09 6E-06 0.0307 0.001 0.1045 0.0192 0.1634 0.0339 0.0336 0.2374 

*1502 0.0014 1E-07 5E-05 0.0313 0.0041 0.0955 0.033 0.1432 0.0517 0.0525 0.2018 

*0404 0.0004 4E-10 1E-06 0.012 0.0002 0.0438 0.0054 0.0712 0.0096 0.0094 0.1052 

*1501 2E-05 1E-18 1E-11 0.0033 2E-09 0.0178 1E-05 0.0339 2E-05 1E-05 0.0535 

*0701 3E-05 2E-17 4E-11 0.0032 1E-08 0.0172 2E-05 0.0325 4E-05 2E-05 0.0511 

*0401 4E-05 8E-16 4E-10 0.0036 1E-07 0.0181 7E-05 0.0336 0.0001 1E-04 0.0525 

*0103 0.0005 6E-09 6E-06 0.0125 0.0008 0.0418 0.009 0.0654 0.015 0.015 0.0945 

 

 

 

DRB1 *1302 *1303 binned *1601 *1401 *1502 *0404 *1501 *0701 *0401 *0103 

*1103 0.0129 0.0174 0.0055 0.0065 0.0011 0.0014 0.0004 2E-05 3E-05 4E-05 0.0005 

*0801 1E-06 8E-05 3E-08 1E-05 3E-09 1E-07 4E-10 1E-18 2E-17 8E-16 6E-09 

*1104 0.0005 0.0043 6E-05 0.0009 6E-06 5E-05 1E-06 1E-11 4E-11 4E-10 6E-06 

*0403 0.2032 0.213 0.1157 0.0982 0.0307 0.0313 0.012 0.0033 0.0032 0.0036 0.0125 

*1301 0.0496 0.1231 0.009 0.0371 0.001 0.0041 0.0002 2E-09 1E-08 1E-07 0.0008 

*0102 0.53 0.5032 0.3399 0.2556 0.1045 0.0955 0.0438 0.0178 0.0172 0.0181 0.0418 

*1101 0.371 0.4207 0.1365 0.1611 0.0192 0.033 0.0054 1E-05 2E-05 7E-05 0.009 

*0901 0.7266 0.6675 0.4928 0.3559 0.1634 0.1432 0.0712 0.0339 0.0325 0.0336 0.0654 

*0101 0.5604 0.5613 0.2309 0.2268 0.0339 0.0517 0.0096 2E-05 4E-05 0.0001 0.015 

*0301 0.5794 0.5764 0.235 0.2324 0.0336 0.0525 0.0094 1E-05 2E-05 1E-04 0.015 

*1201 0.9618 0.8584 0.683 0.476 0.2374 0.2018 0.1052 0.0535 0.0511 0.0525 0.0945 

*1302  0.8654 0.6152 0.4241 0.1443 0.1419 0.051 0.0055 0.006 0.0084 0.0544 
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*1303 0.8654  0.8436 0.5787 0.3154 0.2605 0.1447 0.0832 0.0792 0.0801 0.1266 

binned 0.6152 0.8436  0.6337 0.2927 0.2522 0.1136 0.0255 0.0261 0.0318 0.108 

*1601 0.4241 0.5787 0.6337  0.7569 0.5974 0.4427 0.424 0.4022 0.3853 0.3593 

*1401 0.1443 0.3154 0.2927 0.7569  0.7638 0.5725 0.5577 0.5245 0.4991 0.4549 

*1502 0.1419 0.2605 0.2522 0.5974 0.7638  0.851 0.9298 0.8922 0.853 0.6903 

*0404 0.051 0.1447 0.1136 0.4427 0.5725 0.851  0.8678 0.9155 0.9679 0.8023 

*1501 0.0055 0.0832 0.0255 0.424 0.5577 0.9298 0.8678  0.9226 0.8521 0.6639 

*0701 0.006 0.0792 0.0261 0.4022 0.5245 0.8922 0.9155 0.9226  0.9246 0.702 

*0401 0.0084 0.0801 0.0318 0.3853 0.4991 0.853 0.9679 0.8521 0.9246  0.7474 

*0103 0.0544 0.1266 0.108 0.3593 0.4549 0.6903 0.8023 0.6639 0.702 0.7474  

 

 

 


